libstdc++
future
Go to the documentation of this file.
1 // <future> -*- C++ -*-
2 
3 // Copyright (C) 2009-2022 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file include/future
26  * This is a Standard C++ Library header.
27  */
28 
29 #ifndef _GLIBCXX_FUTURE
30 #define _GLIBCXX_FUTURE 1
31 
32 #pragma GCC system_header
33 
34 #if __cplusplus < 201103L
35 # include <bits/c++0x_warning.h>
36 #else
37 
38 #include <mutex> // call_once
39 #include <condition_variable> // __at_thread_exit_elt
40 #include <system_error>
41 #include <bits/atomic_base.h> // atomic_flag
42 #include <bits/allocated_ptr.h>
43 #include <bits/atomic_futex.h>
44 #include <bits/exception_defines.h>
45 #include <bits/invoke.h>
46 #include <bits/unique_ptr.h>
47 #include <bits/shared_ptr.h>
48 #include <bits/std_function.h>
49 #include <bits/std_thread.h>
50 #include <bits/uses_allocator.h>
51 #include <ext/aligned_buffer.h>
52 
53 namespace std _GLIBCXX_VISIBILITY(default)
54 {
55 _GLIBCXX_BEGIN_NAMESPACE_VERSION
56 
57  /**
58  * @defgroup futures Futures
59  * @ingroup concurrency
60  *
61  * Classes for futures support.
62  * @{
63  */
64 
65  /// Error code for futures
66  enum class future_errc
67  {
68  future_already_retrieved = 1,
69  promise_already_satisfied,
70  no_state,
71  broken_promise
72  };
73 
74  /// Specialization.
75  template<>
76  struct is_error_code_enum<future_errc> : public true_type { };
77 
78  /// Points to a statically-allocated object derived from error_category.
79  const error_category&
80  future_category() noexcept;
81 
82  /// Overload for make_error_code.
83  inline error_code
84  make_error_code(future_errc __errc) noexcept
85  { return error_code(static_cast<int>(__errc), future_category()); }
86 
87  /// Overload for make_error_condition.
88  inline error_condition
89  make_error_condition(future_errc __errc) noexcept
90  { return error_condition(static_cast<int>(__errc), future_category()); }
91 
92  /**
93  * @brief Exception type thrown by futures.
94  * @ingroup exceptions
95  */
96  class future_error : public logic_error
97  {
98  public:
99  explicit
100  future_error(future_errc __errc)
101  : future_error(std::make_error_code(__errc))
102  { }
103 
104  virtual ~future_error() noexcept;
105 
106  virtual const char*
107  what() const noexcept;
108 
109  const error_code&
110  code() const noexcept { return _M_code; }
111 
112  private:
113  explicit
114  future_error(error_code __ec)
115  : logic_error("std::future_error: " + __ec.message()), _M_code(__ec)
116  { }
117 
118  friend void __throw_future_error(int);
119 
120  error_code _M_code;
121  };
122 
123  // Forward declarations.
124  template<typename _Res>
125  class future;
126 
127  template<typename _Res>
128  class shared_future;
129 
130  template<typename _Signature>
131  class packaged_task;
132 
133  template<typename _Res>
134  class promise;
135 
136  /// Launch code for futures
137  enum class launch
138  {
139  async = 1,
140  deferred = 2
141  };
142 
143  constexpr launch operator&(launch __x, launch __y) noexcept
144  {
145  return static_cast<launch>(
146  static_cast<int>(__x) & static_cast<int>(__y));
147  }
148 
149  constexpr launch operator|(launch __x, launch __y) noexcept
150  {
151  return static_cast<launch>(
152  static_cast<int>(__x) | static_cast<int>(__y));
153  }
154 
155  constexpr launch operator^(launch __x, launch __y) noexcept
156  {
157  return static_cast<launch>(
158  static_cast<int>(__x) ^ static_cast<int>(__y));
159  }
160 
161  constexpr launch operator~(launch __x) noexcept
162  { return static_cast<launch>(~static_cast<int>(__x)); }
163 
164  inline launch& operator&=(launch& __x, launch __y) noexcept
165  { return __x = __x & __y; }
166 
167  inline launch& operator|=(launch& __x, launch __y) noexcept
168  { return __x = __x | __y; }
169 
170  inline launch& operator^=(launch& __x, launch __y) noexcept
171  { return __x = __x ^ __y; }
172 
173  /// Status code for futures
174  enum class future_status
175  {
176  ready,
177  timeout,
178  deferred
179  };
180 
181  // _GLIBCXX_RESOLVE_LIB_DEFECTS
182  // 2021. Further incorrect usages of result_of
183  template<typename _Fn, typename... _Args>
184  using __async_result_of = typename __invoke_result<
185  typename decay<_Fn>::type, typename decay<_Args>::type...>::type;
186 
187  template<typename _Fn, typename... _Args>
188  future<__async_result_of<_Fn, _Args...>>
189  async(launch __policy, _Fn&& __fn, _Args&&... __args);
190 
191  template<typename _Fn, typename... _Args>
192  future<__async_result_of<_Fn, _Args...>>
193  async(_Fn&& __fn, _Args&&... __args);
194 
195 #if defined(_GLIBCXX_HAS_GTHREADS)
196 
197  /// Base class and enclosing scope.
198  struct __future_base
199  {
200  /// Base class for results.
201  struct _Result_base
202  {
203  exception_ptr _M_error;
204 
205  _Result_base(const _Result_base&) = delete;
206  _Result_base& operator=(const _Result_base&) = delete;
207 
208  // _M_destroy() allows derived classes to control deallocation
209  virtual void _M_destroy() = 0;
210 
211  struct _Deleter
212  {
213  void operator()(_Result_base* __fr) const { __fr->_M_destroy(); }
214  };
215 
216  protected:
217  _Result_base();
218  virtual ~_Result_base();
219  };
220 
221  /// A unique_ptr for result objects.
222  template<typename _Res>
223  using _Ptr = unique_ptr<_Res, _Result_base::_Deleter>;
224 
225  /// A result object that has storage for an object of type _Res.
226  template<typename _Res>
227  struct _Result : _Result_base
228  {
229  private:
230  __gnu_cxx::__aligned_buffer<_Res> _M_storage;
231  bool _M_initialized;
232 
233  public:
234  typedef _Res result_type;
235 
236  _Result() noexcept : _M_initialized() { }
237 
238  ~_Result()
239  {
240  if (_M_initialized)
241  _M_value().~_Res();
242  }
243 
244  // Return lvalue, future will add const or rvalue-reference
245  _Res&
246  _M_value() noexcept { return *_M_storage._M_ptr(); }
247 
248  void
249  _M_set(const _Res& __res)
250  {
251  ::new (_M_storage._M_addr()) _Res(__res);
252  _M_initialized = true;
253  }
254 
255  void
256  _M_set(_Res&& __res)
257  {
258  ::new (_M_storage._M_addr()) _Res(std::move(__res));
259  _M_initialized = true;
260  }
261 
262  private:
263  void _M_destroy() { delete this; }
264  };
265 
266  /// A result object that uses an allocator.
267  template<typename _Res, typename _Alloc>
268  struct _Result_alloc final : _Result<_Res>, _Alloc
269  {
270  using __allocator_type = __alloc_rebind<_Alloc, _Result_alloc>;
271 
272  explicit
273  _Result_alloc(const _Alloc& __a) : _Result<_Res>(), _Alloc(__a)
274  { }
275 
276  private:
277  void _M_destroy()
278  {
279  __allocator_type __a(*this);
280  __allocated_ptr<__allocator_type> __guard_ptr{ __a, this };
281  this->~_Result_alloc();
282  }
283  };
284 
285  // Create a result object that uses an allocator.
286  template<typename _Res, typename _Allocator>
287  static _Ptr<_Result_alloc<_Res, _Allocator>>
288  _S_allocate_result(const _Allocator& __a)
289  {
290  using __result_type = _Result_alloc<_Res, _Allocator>;
291  typename __result_type::__allocator_type __a2(__a);
292  auto __guard = std::__allocate_guarded(__a2);
293  __result_type* __p = ::new((void*)__guard.get()) __result_type{__a};
294  __guard = nullptr;
295  return _Ptr<__result_type>(__p);
296  }
297 
298  // Keep it simple for std::allocator.
299  template<typename _Res, typename _Tp>
300  static _Ptr<_Result<_Res>>
301  _S_allocate_result(const std::allocator<_Tp>& __a)
302  {
303  return _Ptr<_Result<_Res>>(new _Result<_Res>);
304  }
305 
306  // Base class for various types of shared state created by an
307  // asynchronous provider (such as a std::promise) and shared with one
308  // or more associated futures.
309  class _State_baseV2
310  {
311  typedef _Ptr<_Result_base> _Ptr_type;
312 
313  enum _Status : unsigned {
314  __not_ready,
315  __ready
316  };
317 
318  _Ptr_type _M_result;
319  __atomic_futex_unsigned<> _M_status;
320  atomic_flag _M_retrieved = ATOMIC_FLAG_INIT;
321  once_flag _M_once;
322 
323  public:
324  _State_baseV2() noexcept : _M_result(), _M_status(_Status::__not_ready)
325  { }
326  _State_baseV2(const _State_baseV2&) = delete;
327  _State_baseV2& operator=(const _State_baseV2&) = delete;
328  virtual ~_State_baseV2() = default;
329 
330  _Result_base&
331  wait()
332  {
333  // Run any deferred function or join any asynchronous thread:
334  _M_complete_async();
335  // Acquire MO makes sure this synchronizes with the thread that made
336  // the future ready.
337  _M_status._M_load_when_equal(_Status::__ready, memory_order_acquire);
338  return *_M_result;
339  }
340 
341  template<typename _Rep, typename _Period>
342  future_status
343  wait_for(const chrono::duration<_Rep, _Period>& __rel)
344  {
345  // First, check if the future has been made ready. Use acquire MO
346  // to synchronize with the thread that made it ready.
347  if (_M_status._M_load(memory_order_acquire) == _Status::__ready)
348  return future_status::ready;
349 
350  if (_M_is_deferred_future())
351  return future_status::deferred;
352 
353  // Don't wait unless the relative time is greater than zero.
354  if (__rel > __rel.zero()
355  && _M_status._M_load_when_equal_for(_Status::__ready,
356  memory_order_acquire,
357  __rel))
358  {
359  // _GLIBCXX_RESOLVE_LIB_DEFECTS
360  // 2100. timed waiting functions must also join
361  // This call is a no-op by default except on an async future,
362  // in which case the async thread is joined. It's also not a
363  // no-op for a deferred future, but such a future will never
364  // reach this point because it returns future_status::deferred
365  // instead of waiting for the future to become ready (see
366  // above). Async futures synchronize in this call, so we need
367  // no further synchronization here.
368  _M_complete_async();
369 
370  return future_status::ready;
371  }
372  return future_status::timeout;
373  }
374 
375  template<typename _Clock, typename _Duration>
376  future_status
377  wait_until(const chrono::time_point<_Clock, _Duration>& __abs)
378  {
379 #if __cplusplus > 201703L
380  static_assert(chrono::is_clock_v<_Clock>);
381 #endif
382  // First, check if the future has been made ready. Use acquire MO
383  // to synchronize with the thread that made it ready.
384  if (_M_status._M_load(memory_order_acquire) == _Status::__ready)
385  return future_status::ready;
386 
387  if (_M_is_deferred_future())
388  return future_status::deferred;
389 
390  if (_M_status._M_load_when_equal_until(_Status::__ready,
391  memory_order_acquire,
392  __abs))
393  {
394  // _GLIBCXX_RESOLVE_LIB_DEFECTS
395  // 2100. timed waiting functions must also join
396  // See wait_for(...) above.
397  _M_complete_async();
398 
399  return future_status::ready;
400  }
401  return future_status::timeout;
402  }
403 
404  // Provide a result to the shared state and make it ready.
405  // Calls at most once: _M_result = __res();
406  void
407  _M_set_result(function<_Ptr_type()> __res, bool __ignore_failure = false)
408  {
409  bool __did_set = false;
410  // all calls to this function are serialized,
411  // side-effects of invoking __res only happen once
412  call_once(_M_once, &_State_baseV2::_M_do_set, this,
413  std::__addressof(__res), std::__addressof(__did_set));
414  if (__did_set)
415  // Use release MO to synchronize with observers of the ready state.
416  _M_status._M_store_notify_all(_Status::__ready,
417  memory_order_release);
418  else if (!__ignore_failure)
419  __throw_future_error(int(future_errc::promise_already_satisfied));
420  }
421 
422  // Provide a result to the shared state but delay making it ready
423  // until the calling thread exits.
424  // Calls at most once: _M_result = __res();
425  void
426  _M_set_delayed_result(function<_Ptr_type()> __res,
427  weak_ptr<_State_baseV2> __self)
428  {
429  bool __did_set = false;
430  unique_ptr<_Make_ready> __mr{new _Make_ready};
431  // all calls to this function are serialized,
432  // side-effects of invoking __res only happen once
433  call_once(_M_once, &_State_baseV2::_M_do_set, this,
434  std::__addressof(__res), std::__addressof(__did_set));
435  if (!__did_set)
436  __throw_future_error(int(future_errc::promise_already_satisfied));
437  __mr->_M_shared_state = std::move(__self);
438  __mr->_M_set();
439  __mr.release();
440  }
441 
442  // Abandon this shared state.
443  void
444  _M_break_promise(_Ptr_type __res)
445  {
446  if (static_cast<bool>(__res))
447  {
448  __res->_M_error =
449  make_exception_ptr(future_error(future_errc::broken_promise));
450  // This function is only called when the last asynchronous result
451  // provider is abandoning this shared state, so noone can be
452  // trying to make the shared state ready at the same time, and
453  // we can access _M_result directly instead of through call_once.
454  _M_result.swap(__res);
455  // Use release MO to synchronize with observers of the ready state.
456  _M_status._M_store_notify_all(_Status::__ready,
457  memory_order_release);
458  }
459  }
460 
461  // Called when this object is first passed to a future.
462  void
463  _M_set_retrieved_flag()
464  {
465  if (_M_retrieved.test_and_set())
466  __throw_future_error(int(future_errc::future_already_retrieved));
467  }
468 
469  template<typename _Res, typename _Arg>
470  struct _Setter;
471 
472  // set lvalues
473  template<typename _Res, typename _Arg>
474  struct _Setter<_Res, _Arg&>
475  {
476  // check this is only used by promise<R>::set_value(const R&)
477  // or promise<R&>::set_value(R&)
478  static_assert(is_same<_Res, _Arg&>::value // promise<R&>
479  || is_same<const _Res, _Arg>::value, // promise<R>
480  "Invalid specialisation");
481 
482  // Used by std::promise to copy construct the result.
483  typename promise<_Res>::_Ptr_type operator()() const
484  {
485  _M_promise->_M_storage->_M_set(*_M_arg);
486  return std::move(_M_promise->_M_storage);
487  }
488  promise<_Res>* _M_promise;
489  _Arg* _M_arg;
490  };
491 
492  // set rvalues
493  template<typename _Res>
494  struct _Setter<_Res, _Res&&>
495  {
496  // Used by std::promise to move construct the result.
497  typename promise<_Res>::_Ptr_type operator()() const
498  {
499  _M_promise->_M_storage->_M_set(std::move(*_M_arg));
500  return std::move(_M_promise->_M_storage);
501  }
502  promise<_Res>* _M_promise;
503  _Res* _M_arg;
504  };
505 
506  // set void
507  template<typename _Res>
508  struct _Setter<_Res, void>
509  {
510  static_assert(is_void<_Res>::value, "Only used for promise<void>");
511 
512  typename promise<_Res>::_Ptr_type operator()() const
513  { return std::move(_M_promise->_M_storage); }
514 
515  promise<_Res>* _M_promise;
516  };
517 
518  struct __exception_ptr_tag { };
519 
520  // set exceptions
521  template<typename _Res>
522  struct _Setter<_Res, __exception_ptr_tag>
523  {
524  // Used by std::promise to store an exception as the result.
525  typename promise<_Res>::_Ptr_type operator()() const
526  {
527  _M_promise->_M_storage->_M_error = *_M_ex;
528  return std::move(_M_promise->_M_storage);
529  }
530 
531  promise<_Res>* _M_promise;
532  exception_ptr* _M_ex;
533  };
534 
535  template<typename _Res, typename _Arg>
536  __attribute__((__always_inline__))
537  static _Setter<_Res, _Arg&&>
538  __setter(promise<_Res>* __prom, _Arg&& __arg) noexcept
539  {
540  return _Setter<_Res, _Arg&&>{ __prom, std::__addressof(__arg) };
541  }
542 
543  template<typename _Res>
544  __attribute__((__always_inline__))
545  static _Setter<_Res, __exception_ptr_tag>
546  __setter(exception_ptr& __ex, promise<_Res>* __prom) noexcept
547  {
548  return _Setter<_Res, __exception_ptr_tag>{ __prom, &__ex };
549  }
550 
551  template<typename _Res>
552  __attribute__((__always_inline__))
553  static _Setter<_Res, void>
554  __setter(promise<_Res>* __prom) noexcept
555  {
556  return _Setter<_Res, void>{ __prom };
557  }
558 
559  template<typename _Tp>
560  static void
561  _S_check(const shared_ptr<_Tp>& __p)
562  {
563  if (!static_cast<bool>(__p))
564  __throw_future_error((int)future_errc::no_state);
565  }
566 
567  private:
568  // The function invoked with std::call_once(_M_once, ...).
569  void
570  _M_do_set(function<_Ptr_type()>* __f, bool* __did_set)
571  {
572  _Ptr_type __res = (*__f)();
573  // Notify the caller that we did try to set; if we do not throw an
574  // exception, the caller will be aware that it did set (e.g., see
575  // _M_set_result).
576  *__did_set = true;
577  _M_result.swap(__res); // nothrow
578  }
579 
580  // Wait for completion of async function.
581  virtual void _M_complete_async() { }
582 
583  // Return true if state corresponds to a deferred function.
584  virtual bool _M_is_deferred_future() const { return false; }
585 
586  struct _Make_ready final : __at_thread_exit_elt
587  {
588  weak_ptr<_State_baseV2> _M_shared_state;
589  static void _S_run(void*);
590  void _M_set();
591  };
592  };
593 
594 #ifdef _GLIBCXX_ASYNC_ABI_COMPAT
595  class _State_base;
596  class _Async_state_common;
597 #else
598  using _State_base = _State_baseV2;
599  class _Async_state_commonV2;
600 #endif
601 
602  template<typename _BoundFn,
603  typename _Res = decltype(std::declval<_BoundFn&>()())>
604  class _Deferred_state;
605 
606  template<typename _BoundFn,
607  typename _Res = decltype(std::declval<_BoundFn&>()())>
608  class _Async_state_impl;
609 
610  template<typename _Signature>
611  class _Task_state_base;
612 
613  template<typename _Fn, typename _Alloc, typename _Signature>
614  class _Task_state;
615 
616  template<typename _Res_ptr, typename _Fn,
617  typename _Res = typename _Res_ptr::element_type::result_type>
618  struct _Task_setter;
619 
620  template<typename _Res_ptr, typename _BoundFn>
621  static _Task_setter<_Res_ptr, _BoundFn>
622  _S_task_setter(_Res_ptr& __ptr, _BoundFn& __call)
623  {
624  return { std::__addressof(__ptr), std::__addressof(__call) };
625  }
626  };
627 
628  /// Partial specialization for reference types.
629  template<typename _Res>
630  struct __future_base::_Result<_Res&> : __future_base::_Result_base
631  {
632  typedef _Res& result_type;
633 
634  _Result() noexcept : _M_value_ptr() { }
635 
636  void
637  _M_set(_Res& __res) noexcept
638  { _M_value_ptr = std::addressof(__res); }
639 
640  _Res& _M_get() noexcept { return *_M_value_ptr; }
641 
642  private:
643  _Res* _M_value_ptr;
644 
645  void _M_destroy() { delete this; }
646  };
647 
648  /// Explicit specialization for void.
649  template<>
650  struct __future_base::_Result<void> : __future_base::_Result_base
651  {
652  typedef void result_type;
653 
654  private:
655  void _M_destroy() { delete this; }
656  };
657 
658 #ifndef _GLIBCXX_ASYNC_ABI_COMPAT
659 
660  // Allow _Setter objects to be stored locally in std::function
661  template<typename _Res, typename _Arg>
662  struct __is_location_invariant
663  <__future_base::_State_base::_Setter<_Res, _Arg>>
664  : true_type { };
665 
666  // Allow _Task_setter objects to be stored locally in std::function
667  template<typename _Res_ptr, typename _Fn, typename _Res>
668  struct __is_location_invariant
669  <__future_base::_Task_setter<_Res_ptr, _Fn, _Res>>
670  : true_type { };
671 
672  /// Common implementation for future and shared_future.
673  template<typename _Res>
674  class __basic_future : public __future_base
675  {
676  protected:
677  typedef shared_ptr<_State_base> __state_type;
678  typedef __future_base::_Result<_Res>& __result_type;
679 
680  private:
681  __state_type _M_state;
682 
683  public:
684  // Disable copying.
685  __basic_future(const __basic_future&) = delete;
686  __basic_future& operator=(const __basic_future&) = delete;
687 
688  bool
689  valid() const noexcept { return static_cast<bool>(_M_state); }
690 
691  void
692  wait() const
693  {
694  _State_base::_S_check(_M_state);
695  _M_state->wait();
696  }
697 
698  template<typename _Rep, typename _Period>
699  future_status
700  wait_for(const chrono::duration<_Rep, _Period>& __rel) const
701  {
702  _State_base::_S_check(_M_state);
703  return _M_state->wait_for(__rel);
704  }
705 
706  template<typename _Clock, typename _Duration>
707  future_status
708  wait_until(const chrono::time_point<_Clock, _Duration>& __abs) const
709  {
710  _State_base::_S_check(_M_state);
711  return _M_state->wait_until(__abs);
712  }
713 
714  protected:
715  /// Wait for the state to be ready and rethrow any stored exception
716  __result_type
717  _M_get_result() const
718  {
719  _State_base::_S_check(_M_state);
720  _Result_base& __res = _M_state->wait();
721  if (!(__res._M_error == nullptr))
722  rethrow_exception(__res._M_error);
723  return static_cast<__result_type>(__res);
724  }
725 
726  void _M_swap(__basic_future& __that) noexcept
727  {
728  _M_state.swap(__that._M_state);
729  }
730 
731  // Construction of a future by promise::get_future()
732  explicit
733  __basic_future(const __state_type& __state) : _M_state(__state)
734  {
735  _State_base::_S_check(_M_state);
736  _M_state->_M_set_retrieved_flag();
737  }
738 
739  // Copy construction from a shared_future
740  explicit
741  __basic_future(const shared_future<_Res>&) noexcept;
742 
743  // Move construction from a shared_future
744  explicit
745  __basic_future(shared_future<_Res>&&) noexcept;
746 
747  // Move construction from a future
748  explicit
749  __basic_future(future<_Res>&&) noexcept;
750 
751  constexpr __basic_future() noexcept : _M_state() { }
752 
753  struct _Reset
754  {
755  explicit _Reset(__basic_future& __fut) noexcept : _M_fut(__fut) { }
756  ~_Reset() { _M_fut._M_state.reset(); }
757  __basic_future& _M_fut;
758  };
759  };
760 
761 
762  /// Primary template for future.
763  template<typename _Res>
764  class future : public __basic_future<_Res>
765  {
766  // _GLIBCXX_RESOLVE_LIB_DEFECTS
767  // 3458. Is shared_future intended to work with arrays or function types?
768  static_assert(!is_array<_Res>{}, "result type must not be an array");
769  static_assert(!is_function<_Res>{}, "result type must not be a function");
770  static_assert(is_destructible<_Res>{},
771  "result type must be destructible");
772 
773  friend class promise<_Res>;
774  template<typename> friend class packaged_task;
775  template<typename _Fn, typename... _Args>
776  friend future<__async_result_of<_Fn, _Args...>>
777  async(launch, _Fn&&, _Args&&...);
778 
779  typedef __basic_future<_Res> _Base_type;
780  typedef typename _Base_type::__state_type __state_type;
781 
782  explicit
783  future(const __state_type& __state) : _Base_type(__state) { }
784 
785  public:
786  constexpr future() noexcept : _Base_type() { }
787 
788  /// Move constructor
789  future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
790 
791  // Disable copying
792  future(const future&) = delete;
793  future& operator=(const future&) = delete;
794 
795  future& operator=(future&& __fut) noexcept
796  {
797  future(std::move(__fut))._M_swap(*this);
798  return *this;
799  }
800 
801  /// Retrieving the value
802  _Res
803  get()
804  {
805  typename _Base_type::_Reset __reset(*this);
806  return std::move(this->_M_get_result()._M_value());
807  }
808 
809  shared_future<_Res> share() noexcept;
810  };
811 
812  /// Partial specialization for future<R&>
813  template<typename _Res>
814  class future<_Res&> : public __basic_future<_Res&>
815  {
816  friend class promise<_Res&>;
817  template<typename> friend class packaged_task;
818  template<typename _Fn, typename... _Args>
819  friend future<__async_result_of<_Fn, _Args...>>
820  async(launch, _Fn&&, _Args&&...);
821 
822  typedef __basic_future<_Res&> _Base_type;
823  typedef typename _Base_type::__state_type __state_type;
824 
825  explicit
826  future(const __state_type& __state) : _Base_type(__state) { }
827 
828  public:
829  constexpr future() noexcept : _Base_type() { }
830 
831  /// Move constructor
832  future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
833 
834  // Disable copying
835  future(const future&) = delete;
836  future& operator=(const future&) = delete;
837 
838  future& operator=(future&& __fut) noexcept
839  {
840  future(std::move(__fut))._M_swap(*this);
841  return *this;
842  }
843 
844  /// Retrieving the value
845  _Res&
846  get()
847  {
848  typename _Base_type::_Reset __reset(*this);
849  return this->_M_get_result()._M_get();
850  }
851 
852  shared_future<_Res&> share() noexcept;
853  };
854 
855  /// Explicit specialization for future<void>
856  template<>
857  class future<void> : public __basic_future<void>
858  {
859  friend class promise<void>;
860  template<typename> friend class packaged_task;
861  template<typename _Fn, typename... _Args>
862  friend future<__async_result_of<_Fn, _Args...>>
863  async(launch, _Fn&&, _Args&&...);
864 
865  typedef __basic_future<void> _Base_type;
866  typedef typename _Base_type::__state_type __state_type;
867 
868  explicit
869  future(const __state_type& __state) : _Base_type(__state) { }
870 
871  public:
872  constexpr future() noexcept : _Base_type() { }
873 
874  /// Move constructor
875  future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
876 
877  // Disable copying
878  future(const future&) = delete;
879  future& operator=(const future&) = delete;
880 
881  future& operator=(future&& __fut) noexcept
882  {
883  future(std::move(__fut))._M_swap(*this);
884  return *this;
885  }
886 
887  /// Retrieving the value
888  void
889  get()
890  {
891  typename _Base_type::_Reset __reset(*this);
892  this->_M_get_result();
893  }
894 
895  shared_future<void> share() noexcept;
896  };
897 
898 
899  /// Primary template for shared_future.
900  template<typename _Res>
901  class shared_future : public __basic_future<_Res>
902  {
903  // _GLIBCXX_RESOLVE_LIB_DEFECTS
904  // 3458. Is shared_future intended to work with arrays or function types?
905  static_assert(!is_array<_Res>{}, "result type must not be an array");
906  static_assert(!is_function<_Res>{}, "result type must not be a function");
907  static_assert(is_destructible<_Res>{},
908  "result type must be destructible");
909 
910  typedef __basic_future<_Res> _Base_type;
911 
912  public:
913  constexpr shared_future() noexcept : _Base_type() { }
914 
915  /// Copy constructor
916  shared_future(const shared_future& __sf) noexcept : _Base_type(__sf) { }
917 
918  /// Construct from a future rvalue
919  shared_future(future<_Res>&& __uf) noexcept
920  : _Base_type(std::move(__uf))
921  { }
922 
923  /// Construct from a shared_future rvalue
924  shared_future(shared_future&& __sf) noexcept
925  : _Base_type(std::move(__sf))
926  { }
927 
928  shared_future& operator=(const shared_future& __sf) noexcept
929  {
930  shared_future(__sf)._M_swap(*this);
931  return *this;
932  }
933 
934  shared_future& operator=(shared_future&& __sf) noexcept
935  {
936  shared_future(std::move(__sf))._M_swap(*this);
937  return *this;
938  }
939 
940  /// Retrieving the value
941  const _Res&
942  get() const { return this->_M_get_result()._M_value(); }
943  };
944 
945  /// Partial specialization for shared_future<R&>
946  template<typename _Res>
947  class shared_future<_Res&> : public __basic_future<_Res&>
948  {
949  typedef __basic_future<_Res&> _Base_type;
950 
951  public:
952  constexpr shared_future() noexcept : _Base_type() { }
953 
954  /// Copy constructor
955  shared_future(const shared_future& __sf) : _Base_type(__sf) { }
956 
957  /// Construct from a future rvalue
958  shared_future(future<_Res&>&& __uf) noexcept
959  : _Base_type(std::move(__uf))
960  { }
961 
962  /// Construct from a shared_future rvalue
963  shared_future(shared_future&& __sf) noexcept
964  : _Base_type(std::move(__sf))
965  { }
966 
967  shared_future& operator=(const shared_future& __sf)
968  {
969  shared_future(__sf)._M_swap(*this);
970  return *this;
971  }
972 
973  shared_future& operator=(shared_future&& __sf) noexcept
974  {
975  shared_future(std::move(__sf))._M_swap(*this);
976  return *this;
977  }
978 
979  /// Retrieving the value
980  _Res&
981  get() const { return this->_M_get_result()._M_get(); }
982  };
983 
984  /// Explicit specialization for shared_future<void>
985  template<>
986  class shared_future<void> : public __basic_future<void>
987  {
988  typedef __basic_future<void> _Base_type;
989 
990  public:
991  constexpr shared_future() noexcept : _Base_type() { }
992 
993  /// Copy constructor
994  shared_future(const shared_future& __sf) : _Base_type(__sf) { }
995 
996  /// Construct from a future rvalue
997  shared_future(future<void>&& __uf) noexcept
998  : _Base_type(std::move(__uf))
999  { }
1000 
1001  /// Construct from a shared_future rvalue
1002  shared_future(shared_future&& __sf) noexcept
1003  : _Base_type(std::move(__sf))
1004  { }
1005 
1006  shared_future& operator=(const shared_future& __sf)
1007  {
1008  shared_future(__sf)._M_swap(*this);
1009  return *this;
1010  }
1011 
1012  shared_future& operator=(shared_future&& __sf) noexcept
1013  {
1014  shared_future(std::move(__sf))._M_swap(*this);
1015  return *this;
1016  }
1017 
1018  // Retrieving the value
1019  void
1020  get() const { this->_M_get_result(); }
1021  };
1022 
1023  // Now we can define the protected __basic_future constructors.
1024  template<typename _Res>
1025  inline __basic_future<_Res>::
1026  __basic_future(const shared_future<_Res>& __sf) noexcept
1027  : _M_state(__sf._M_state)
1028  { }
1029 
1030  template<typename _Res>
1031  inline __basic_future<_Res>::
1032  __basic_future(shared_future<_Res>&& __sf) noexcept
1033  : _M_state(std::move(__sf._M_state))
1034  { }
1035 
1036  template<typename _Res>
1037  inline __basic_future<_Res>::
1038  __basic_future(future<_Res>&& __uf) noexcept
1039  : _M_state(std::move(__uf._M_state))
1040  { }
1041 
1042  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1043  // 2556. Wide contract for future::share()
1044  template<typename _Res>
1045  inline shared_future<_Res>
1046  future<_Res>::share() noexcept
1047  { return shared_future<_Res>(std::move(*this)); }
1048 
1049  template<typename _Res>
1050  inline shared_future<_Res&>
1051  future<_Res&>::share() noexcept
1052  { return shared_future<_Res&>(std::move(*this)); }
1053 
1054  inline shared_future<void>
1055  future<void>::share() noexcept
1056  { return shared_future<void>(std::move(*this)); }
1057 
1058  /// Primary template for promise
1059  template<typename _Res>
1060  class promise
1061  {
1062  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1063  // 3466: Specify the requirements for promise/future/[...] consistently
1064  static_assert(!is_array<_Res>{}, "result type must not be an array");
1065  static_assert(!is_function<_Res>{}, "result type must not be a function");
1066  static_assert(is_destructible<_Res>{},
1067  "result type must be destructible");
1068 
1069  typedef __future_base::_State_base _State;
1070  typedef __future_base::_Result<_Res> _Res_type;
1071  typedef __future_base::_Ptr<_Res_type> _Ptr_type;
1072  template<typename, typename> friend struct _State::_Setter;
1073  friend _State;
1074 
1075  shared_ptr<_State> _M_future;
1076  _Ptr_type _M_storage;
1077 
1078  public:
1079  promise()
1080  : _M_future(std::make_shared<_State>()),
1081  _M_storage(new _Res_type())
1082  { }
1083 
1084  promise(promise&& __rhs) noexcept
1085  : _M_future(std::move(__rhs._M_future)),
1086  _M_storage(std::move(__rhs._M_storage))
1087  { }
1088 
1089  template<typename _Allocator>
1090  promise(allocator_arg_t, const _Allocator& __a)
1091  : _M_future(std::allocate_shared<_State>(__a)),
1092  _M_storage(__future_base::_S_allocate_result<_Res>(__a))
1093  { }
1094 
1095  template<typename _Allocator>
1096  promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1097  : _M_future(std::move(__rhs._M_future)),
1098  _M_storage(std::move(__rhs._M_storage))
1099  { }
1100 
1101  promise(const promise&) = delete;
1102 
1103  ~promise()
1104  {
1105  if (static_cast<bool>(_M_future) && !_M_future.unique())
1106  _M_future->_M_break_promise(std::move(_M_storage));
1107  }
1108 
1109  // Assignment
1110  promise&
1111  operator=(promise&& __rhs) noexcept
1112  {
1113  promise(std::move(__rhs)).swap(*this);
1114  return *this;
1115  }
1116 
1117  promise& operator=(const promise&) = delete;
1118 
1119  void
1120  swap(promise& __rhs) noexcept
1121  {
1122  _M_future.swap(__rhs._M_future);
1123  _M_storage.swap(__rhs._M_storage);
1124  }
1125 
1126  // Retrieving the result
1127  future<_Res>
1128  get_future()
1129  { return future<_Res>(_M_future); }
1130 
1131  // Setting the result
1132  void
1133  set_value(const _Res& __r)
1134  { _M_state()._M_set_result(_State::__setter(this, __r)); }
1135 
1136  void
1137  set_value(_Res&& __r)
1138  { _M_state()._M_set_result(_State::__setter(this, std::move(__r))); }
1139 
1140  void
1141  set_exception(exception_ptr __p)
1142  { _M_state()._M_set_result(_State::__setter(__p, this)); }
1143 
1144  void
1145  set_value_at_thread_exit(const _Res& __r)
1146  {
1147  _M_state()._M_set_delayed_result(_State::__setter(this, __r),
1148  _M_future);
1149  }
1150 
1151  void
1152  set_value_at_thread_exit(_Res&& __r)
1153  {
1154  _M_state()._M_set_delayed_result(
1155  _State::__setter(this, std::move(__r)), _M_future);
1156  }
1157 
1158  void
1159  set_exception_at_thread_exit(exception_ptr __p)
1160  {
1161  _M_state()._M_set_delayed_result(_State::__setter(__p, this),
1162  _M_future);
1163  }
1164 
1165  private:
1166  _State&
1167  _M_state()
1168  {
1169  __future_base::_State_base::_S_check(_M_future);
1170  return *_M_future;
1171  }
1172  };
1173 
1174  template<typename _Res>
1175  inline void
1176  swap(promise<_Res>& __x, promise<_Res>& __y) noexcept
1177  { __x.swap(__y); }
1178 
1179  template<typename _Res, typename _Alloc>
1180  struct uses_allocator<promise<_Res>, _Alloc>
1181  : public true_type { };
1182 
1183 
1184  /// Partial specialization for promise<R&>
1185  template<typename _Res>
1186  class promise<_Res&>
1187  {
1188  typedef __future_base::_State_base _State;
1189  typedef __future_base::_Result<_Res&> _Res_type;
1190  typedef __future_base::_Ptr<_Res_type> _Ptr_type;
1191  template<typename, typename> friend struct _State::_Setter;
1192  friend _State;
1193 
1194  shared_ptr<_State> _M_future;
1195  _Ptr_type _M_storage;
1196 
1197  public:
1198  promise()
1199  : _M_future(std::make_shared<_State>()),
1200  _M_storage(new _Res_type())
1201  { }
1202 
1203  promise(promise&& __rhs) noexcept
1204  : _M_future(std::move(__rhs._M_future)),
1205  _M_storage(std::move(__rhs._M_storage))
1206  { }
1207 
1208  template<typename _Allocator>
1209  promise(allocator_arg_t, const _Allocator& __a)
1210  : _M_future(std::allocate_shared<_State>(__a)),
1211  _M_storage(__future_base::_S_allocate_result<_Res&>(__a))
1212  { }
1213 
1214  template<typename _Allocator>
1215  promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1216  : _M_future(std::move(__rhs._M_future)),
1217  _M_storage(std::move(__rhs._M_storage))
1218  { }
1219 
1220  promise(const promise&) = delete;
1221 
1222  ~promise()
1223  {
1224  if (static_cast<bool>(_M_future) && !_M_future.unique())
1225  _M_future->_M_break_promise(std::move(_M_storage));
1226  }
1227 
1228  // Assignment
1229  promise&
1230  operator=(promise&& __rhs) noexcept
1231  {
1232  promise(std::move(__rhs)).swap(*this);
1233  return *this;
1234  }
1235 
1236  promise& operator=(const promise&) = delete;
1237 
1238  void
1239  swap(promise& __rhs) noexcept
1240  {
1241  _M_future.swap(__rhs._M_future);
1242  _M_storage.swap(__rhs._M_storage);
1243  }
1244 
1245  // Retrieving the result
1246  future<_Res&>
1247  get_future()
1248  { return future<_Res&>(_M_future); }
1249 
1250  // Setting the result
1251  void
1252  set_value(_Res& __r)
1253  { _M_state()._M_set_result(_State::__setter(this, __r)); }
1254 
1255  void
1256  set_exception(exception_ptr __p)
1257  { _M_state()._M_set_result(_State::__setter(__p, this)); }
1258 
1259  void
1260  set_value_at_thread_exit(_Res& __r)
1261  {
1262  _M_state()._M_set_delayed_result(_State::__setter(this, __r),
1263  _M_future);
1264  }
1265 
1266  void
1267  set_exception_at_thread_exit(exception_ptr __p)
1268  {
1269  _M_state()._M_set_delayed_result(_State::__setter(__p, this),
1270  _M_future);
1271  }
1272 
1273  private:
1274  _State&
1275  _M_state()
1276  {
1277  __future_base::_State_base::_S_check(_M_future);
1278  return *_M_future;
1279  }
1280  };
1281 
1282  /// Explicit specialization for promise<void>
1283  template<>
1284  class promise<void>
1285  {
1286  typedef __future_base::_State_base _State;
1287  typedef __future_base::_Result<void> _Res_type;
1288  typedef __future_base::_Ptr<_Res_type> _Ptr_type;
1289  template<typename, typename> friend struct _State::_Setter;
1290  friend _State;
1291 
1292  shared_ptr<_State> _M_future;
1293  _Ptr_type _M_storage;
1294 
1295  public:
1296  promise()
1297  : _M_future(std::make_shared<_State>()),
1298  _M_storage(new _Res_type())
1299  { }
1300 
1301  promise(promise&& __rhs) noexcept
1302  : _M_future(std::move(__rhs._M_future)),
1303  _M_storage(std::move(__rhs._M_storage))
1304  { }
1305 
1306  template<typename _Allocator>
1307  promise(allocator_arg_t, const _Allocator& __a)
1308  : _M_future(std::allocate_shared<_State>(__a)),
1309  _M_storage(__future_base::_S_allocate_result<void>(__a))
1310  { }
1311 
1312  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1313  // 2095. missing constructors needed for uses-allocator construction
1314  template<typename _Allocator>
1315  promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1316  : _M_future(std::move(__rhs._M_future)),
1317  _M_storage(std::move(__rhs._M_storage))
1318  { }
1319 
1320  promise(const promise&) = delete;
1321 
1322  ~promise()
1323  {
1324  if (static_cast<bool>(_M_future) && !_M_future.unique())
1325  _M_future->_M_break_promise(std::move(_M_storage));
1326  }
1327 
1328  // Assignment
1329  promise&
1330  operator=(promise&& __rhs) noexcept
1331  {
1332  promise(std::move(__rhs)).swap(*this);
1333  return *this;
1334  }
1335 
1336  promise& operator=(const promise&) = delete;
1337 
1338  void
1339  swap(promise& __rhs) noexcept
1340  {
1341  _M_future.swap(__rhs._M_future);
1342  _M_storage.swap(__rhs._M_storage);
1343  }
1344 
1345  // Retrieving the result
1346  future<void>
1347  get_future()
1348  { return future<void>(_M_future); }
1349 
1350  // Setting the result
1351  void
1352  set_value()
1353  { _M_state()._M_set_result(_State::__setter(this)); }
1354 
1355  void
1356  set_exception(exception_ptr __p)
1357  { _M_state()._M_set_result(_State::__setter(__p, this)); }
1358 
1359  void
1360  set_value_at_thread_exit()
1361  { _M_state()._M_set_delayed_result(_State::__setter(this), _M_future); }
1362 
1363  void
1364  set_exception_at_thread_exit(exception_ptr __p)
1365  {
1366  _M_state()._M_set_delayed_result(_State::__setter(__p, this),
1367  _M_future);
1368  }
1369 
1370  private:
1371  _State&
1372  _M_state()
1373  {
1374  __future_base::_State_base::_S_check(_M_future);
1375  return *_M_future;
1376  }
1377  };
1378 
1379  template<typename _Ptr_type, typename _Fn, typename _Res>
1380  struct __future_base::_Task_setter
1381  {
1382  // Invoke the function and provide the result to the caller.
1383  _Ptr_type operator()() const
1384  {
1385  __try
1386  {
1387  (*_M_result)->_M_set((*_M_fn)());
1388  }
1389  __catch(const __cxxabiv1::__forced_unwind&)
1390  {
1391  __throw_exception_again; // will cause broken_promise
1392  }
1393  __catch(...)
1394  {
1395  (*_M_result)->_M_error = current_exception();
1396  }
1397  return std::move(*_M_result);
1398  }
1399  _Ptr_type* _M_result;
1400  _Fn* _M_fn;
1401  };
1402 
1403  template<typename _Ptr_type, typename _Fn>
1404  struct __future_base::_Task_setter<_Ptr_type, _Fn, void>
1405  {
1406  _Ptr_type operator()() const
1407  {
1408  __try
1409  {
1410  (*_M_fn)();
1411  }
1412  __catch(const __cxxabiv1::__forced_unwind&)
1413  {
1414  __throw_exception_again; // will cause broken_promise
1415  }
1416  __catch(...)
1417  {
1418  (*_M_result)->_M_error = current_exception();
1419  }
1420  return std::move(*_M_result);
1421  }
1422  _Ptr_type* _M_result;
1423  _Fn* _M_fn;
1424  };
1425 
1426  // Holds storage for a packaged_task's result.
1427  template<typename _Res, typename... _Args>
1428  struct __future_base::_Task_state_base<_Res(_Args...)>
1429  : __future_base::_State_base
1430  {
1431  typedef _Res _Res_type;
1432 
1433  template<typename _Alloc>
1434  _Task_state_base(const _Alloc& __a)
1435  : _M_result(_S_allocate_result<_Res>(__a))
1436  { }
1437 
1438  // Invoke the stored task and make the state ready.
1439  virtual void
1440  _M_run(_Args&&... __args) = 0;
1441 
1442  // Invoke the stored task and make the state ready at thread exit.
1443  virtual void
1444  _M_run_delayed(_Args&&... __args, weak_ptr<_State_base>) = 0;
1445 
1446  virtual shared_ptr<_Task_state_base>
1447  _M_reset() = 0;
1448 
1449  typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1450  _Ptr_type _M_result;
1451  };
1452 
1453  // Holds a packaged_task's stored task.
1454  template<typename _Fn, typename _Alloc, typename _Res, typename... _Args>
1455  struct __future_base::_Task_state<_Fn, _Alloc, _Res(_Args...)> final
1456  : __future_base::_Task_state_base<_Res(_Args...)>
1457  {
1458  template<typename _Fn2>
1459  _Task_state(_Fn2&& __fn, const _Alloc& __a)
1460  : _Task_state_base<_Res(_Args...)>(__a),
1461  _M_impl(std::forward<_Fn2>(__fn), __a)
1462  { }
1463 
1464  private:
1465  virtual void
1466  _M_run(_Args&&... __args)
1467  {
1468  auto __boundfn = [&] () -> _Res {
1469  return std::__invoke_r<_Res>(_M_impl._M_fn,
1470  std::forward<_Args>(__args)...);
1471  };
1472  this->_M_set_result(_S_task_setter(this->_M_result, __boundfn));
1473  }
1474 
1475  virtual void
1476  _M_run_delayed(_Args&&... __args, weak_ptr<_State_base> __self)
1477  {
1478  auto __boundfn = [&] () -> _Res {
1479  return std::__invoke_r<_Res>(_M_impl._M_fn,
1480  std::forward<_Args>(__args)...);
1481  };
1482  this->_M_set_delayed_result(_S_task_setter(this->_M_result, __boundfn),
1483  std::move(__self));
1484  }
1485 
1486  virtual shared_ptr<_Task_state_base<_Res(_Args...)>>
1487  _M_reset();
1488 
1489  struct _Impl : _Alloc
1490  {
1491  template<typename _Fn2>
1492  _Impl(_Fn2&& __fn, const _Alloc& __a)
1493  : _Alloc(__a), _M_fn(std::forward<_Fn2>(__fn)) { }
1494  _Fn _M_fn;
1495  } _M_impl;
1496  };
1497 
1498  template<typename _Signature, typename _Fn,
1499  typename _Alloc = std::allocator<int>>
1500  static shared_ptr<__future_base::_Task_state_base<_Signature>>
1501  __create_task_state(_Fn&& __fn, const _Alloc& __a = _Alloc())
1502  {
1503  typedef typename decay<_Fn>::type _Fn2;
1504  typedef __future_base::_Task_state<_Fn2, _Alloc, _Signature> _State;
1505  return std::allocate_shared<_State>(__a, std::forward<_Fn>(__fn), __a);
1506  }
1507 
1508  template<typename _Fn, typename _Alloc, typename _Res, typename... _Args>
1509  shared_ptr<__future_base::_Task_state_base<_Res(_Args...)>>
1510  __future_base::_Task_state<_Fn, _Alloc, _Res(_Args...)>::_M_reset()
1511  {
1512  return __create_task_state<_Res(_Args...)>(std::move(_M_impl._M_fn),
1513  static_cast<_Alloc&>(_M_impl));
1514  }
1515 
1516  /// packaged_task
1517  template<typename _Res, typename... _ArgTypes>
1518  class packaged_task<_Res(_ArgTypes...)>
1519  {
1520  typedef __future_base::_Task_state_base<_Res(_ArgTypes...)> _State_type;
1521  shared_ptr<_State_type> _M_state;
1522 
1523  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1524  // 3039. Unnecessary decay in thread and packaged_task
1525  template<typename _Fn, typename _Fn2 = __remove_cvref_t<_Fn>>
1526  using __not_same
1527  = typename enable_if<!is_same<packaged_task, _Fn2>::value>::type;
1528 
1529  public:
1530  // Construction and destruction
1531  packaged_task() noexcept { }
1532 
1533  template<typename _Fn, typename = __not_same<_Fn>>
1534  explicit
1535  packaged_task(_Fn&& __fn)
1536  : _M_state(
1537  __create_task_state<_Res(_ArgTypes...)>(std::forward<_Fn>(__fn)))
1538  { }
1539 
1540 #if __cplusplus < 201703L
1541  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1542  // 2097. packaged_task constructors should be constrained
1543  // 2407. [this constructor should not be] explicit
1544  // 2921. packaged_task and type-erased allocators
1545  template<typename _Fn, typename _Alloc, typename = __not_same<_Fn>>
1546  packaged_task(allocator_arg_t, const _Alloc& __a, _Fn&& __fn)
1547  : _M_state(__create_task_state<_Res(_ArgTypes...)>(
1548  std::forward<_Fn>(__fn), __a))
1549  { }
1550 
1551  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1552  // 2095. missing constructors needed for uses-allocator construction
1553  template<typename _Allocator>
1554  packaged_task(allocator_arg_t, const _Allocator& __a) noexcept
1555  { }
1556 
1557  template<typename _Allocator>
1558  packaged_task(allocator_arg_t, const _Allocator&,
1559  const packaged_task&) = delete;
1560 
1561  template<typename _Allocator>
1562  packaged_task(allocator_arg_t, const _Allocator&,
1563  packaged_task&& __other) noexcept
1564  { this->swap(__other); }
1565 #endif
1566 
1567  ~packaged_task()
1568  {
1569  if (static_cast<bool>(_M_state) && !_M_state.unique())
1570  _M_state->_M_break_promise(std::move(_M_state->_M_result));
1571  }
1572 
1573  // No copy
1574  packaged_task(const packaged_task&) = delete;
1575  packaged_task& operator=(const packaged_task&) = delete;
1576 
1577  // Move support
1578  packaged_task(packaged_task&& __other) noexcept
1579  { this->swap(__other); }
1580 
1581  packaged_task& operator=(packaged_task&& __other) noexcept
1582  {
1583  packaged_task(std::move(__other)).swap(*this);
1584  return *this;
1585  }
1586 
1587  void
1588  swap(packaged_task& __other) noexcept
1589  { _M_state.swap(__other._M_state); }
1590 
1591  bool
1592  valid() const noexcept
1593  { return static_cast<bool>(_M_state); }
1594 
1595  // Result retrieval
1596  future<_Res>
1597  get_future()
1598  { return future<_Res>(_M_state); }
1599 
1600  // Execution
1601  void
1602  operator()(_ArgTypes... __args)
1603  {
1604  __future_base::_State_base::_S_check(_M_state);
1605  _M_state->_M_run(std::forward<_ArgTypes>(__args)...);
1606  }
1607 
1608  void
1609  make_ready_at_thread_exit(_ArgTypes... __args)
1610  {
1611  __future_base::_State_base::_S_check(_M_state);
1612  _M_state->_M_run_delayed(std::forward<_ArgTypes>(__args)..., _M_state);
1613  }
1614 
1615  void
1616  reset()
1617  {
1618  __future_base::_State_base::_S_check(_M_state);
1619  packaged_task __tmp;
1620  __tmp._M_state = _M_state;
1621  _M_state = _M_state->_M_reset();
1622  }
1623  };
1624 
1625  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1626  // 3117. Missing packaged_task deduction guides
1627 #if __cpp_deduction_guides >= 201606
1628  template<typename _Res, typename... _ArgTypes>
1629  packaged_task(_Res(*)(_ArgTypes...)) -> packaged_task<_Res(_ArgTypes...)>;
1630 
1631  template<typename _Fun, typename _Signature = typename
1632  __function_guide_helper<decltype(&_Fun::operator())>::type>
1633  packaged_task(_Fun) -> packaged_task<_Signature>;
1634 #endif
1635 
1636  /// swap
1637  template<typename _Res, typename... _ArgTypes>
1638  inline void
1639  swap(packaged_task<_Res(_ArgTypes...)>& __x,
1640  packaged_task<_Res(_ArgTypes...)>& __y) noexcept
1641  { __x.swap(__y); }
1642 
1643 #if __cplusplus < 201703L
1644  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1645  // 2976. Dangling uses_allocator specialization for packaged_task
1646  template<typename _Res, typename _Alloc>
1647  struct uses_allocator<packaged_task<_Res>, _Alloc>
1648  : public true_type { };
1649 #endif
1650 
1651  // Shared state created by std::async().
1652  // Holds a deferred function and storage for its result.
1653  template<typename _BoundFn, typename _Res>
1654  class __future_base::_Deferred_state final
1655  : public __future_base::_State_base
1656  {
1657  public:
1658  template<typename... _Args>
1659  explicit
1660  _Deferred_state(_Args&&... __args)
1661  : _M_result(new _Result<_Res>()),
1662  _M_fn{{std::forward<_Args>(__args)...}}
1663  { }
1664 
1665  private:
1666  typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1667  _Ptr_type _M_result;
1668  _BoundFn _M_fn;
1669 
1670  // Run the deferred function.
1671  virtual void
1672  _M_complete_async()
1673  {
1674  // Multiple threads can call a waiting function on the future and
1675  // reach this point at the same time. The call_once in _M_set_result
1676  // ensures only the first one run the deferred function, stores the
1677  // result in _M_result, swaps that with the base _M_result and makes
1678  // the state ready. Tell _M_set_result to ignore failure so all later
1679  // calls do nothing.
1680  _M_set_result(_S_task_setter(_M_result, _M_fn), true);
1681  }
1682 
1683  // Caller should check whether the state is ready first, because this
1684  // function will return true even after the deferred function has run.
1685  virtual bool _M_is_deferred_future() const { return true; }
1686  };
1687 
1688  // Common functionality hoisted out of the _Async_state_impl template.
1689  class __future_base::_Async_state_commonV2
1690  : public __future_base::_State_base
1691  {
1692  protected:
1693  ~_Async_state_commonV2() = default;
1694 
1695  // Make waiting functions block until the thread completes, as if joined.
1696  //
1697  // This function is used by wait() to satisfy the first requirement below
1698  // and by wait_for() / wait_until() to satisfy the second.
1699  //
1700  // [futures.async]:
1701  //
1702  // - a call to a waiting function on an asynchronous return object that
1703  // shares the shared state created by this async call shall block until
1704  // the associated thread has completed, as if joined, or else time out.
1705  //
1706  // - the associated thread completion synchronizes with the return from
1707  // the first function that successfully detects the ready status of the
1708  // shared state or with the return from the last function that releases
1709  // the shared state, whichever happens first.
1710  virtual void _M_complete_async() { _M_join(); }
1711 
1712  void _M_join() { std::call_once(_M_once, &thread::join, &_M_thread); }
1713 
1714  thread _M_thread;
1715  once_flag _M_once;
1716  };
1717 
1718  // Shared state created by std::async().
1719  // Starts a new thread that runs a function and makes the shared state ready.
1720  template<typename _BoundFn, typename _Res>
1721  class __future_base::_Async_state_impl final
1722  : public __future_base::_Async_state_commonV2
1723  {
1724  public:
1725  template<typename... _Args>
1726  explicit
1727  _Async_state_impl(_Args&&... __args)
1728  : _M_result(new _Result<_Res>()),
1729  _M_fn{{std::forward<_Args>(__args)...}}
1730  {
1731  _M_thread = std::thread{&_Async_state_impl::_M_run, this};
1732  }
1733 
1734  // Must not destroy _M_result and _M_fn until the thread finishes.
1735  // Call join() directly rather than through _M_join() because no other
1736  // thread can be referring to this state if it is being destroyed.
1737  ~_Async_state_impl()
1738  {
1739  if (_M_thread.joinable())
1740  _M_thread.join();
1741  }
1742 
1743  private:
1744  void
1745  _M_run()
1746  {
1747  __try
1748  {
1749  _M_set_result(_S_task_setter(_M_result, _M_fn));
1750  }
1751  __catch (const __cxxabiv1::__forced_unwind&)
1752  {
1753  // make the shared state ready on thread cancellation
1754  if (static_cast<bool>(_M_result))
1755  this->_M_break_promise(std::move(_M_result));
1756  __throw_exception_again;
1757  }
1758  }
1759 
1760  typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1761  _Ptr_type _M_result;
1762  _BoundFn _M_fn;
1763  };
1764 
1765 
1766  /// async
1767  template<typename _Fn, typename... _Args>
1768  _GLIBCXX_NODISCARD future<__async_result_of<_Fn, _Args...>>
1769  async(launch __policy, _Fn&& __fn, _Args&&... __args)
1770  {
1771  using _Wr = std::thread::_Call_wrapper<_Fn, _Args...>;
1772  using _As = __future_base::_Async_state_impl<_Wr>;
1773  using _Ds = __future_base::_Deferred_state<_Wr>;
1774 
1775  std::shared_ptr<__future_base::_State_base> __state;
1776  if ((__policy & launch::async) == launch::async)
1777  {
1778  __try
1779  {
1780  __state = std::make_shared<_As>(std::forward<_Fn>(__fn),
1781  std::forward<_Args>(__args)...);
1782  }
1783 #if __cpp_exceptions
1784  catch(const system_error& __e)
1785  {
1786  if (__e.code() != errc::resource_unavailable_try_again
1787  || (__policy & launch::deferred) != launch::deferred)
1788  throw;
1789  }
1790 #endif
1791  }
1792  if (!__state)
1793  {
1794  __state = std::make_shared<_Ds>(std::forward<_Fn>(__fn),
1795  std::forward<_Args>(__args)...);
1796  }
1797  return future<__async_result_of<_Fn, _Args...>>(std::move(__state));
1798  }
1799 
1800  /// async, potential overload
1801  template<typename _Fn, typename... _Args>
1802  _GLIBCXX_NODISCARD inline future<__async_result_of<_Fn, _Args...>>
1803  async(_Fn&& __fn, _Args&&... __args)
1804  {
1805  return std::async(launch::async|launch::deferred,
1806  std::forward<_Fn>(__fn),
1807  std::forward<_Args>(__args)...);
1808  }
1809 
1810 #endif // _GLIBCXX_ASYNC_ABI_COMPAT
1811 #endif // _GLIBCXX_HAS_GTHREADS
1812 
1813  /// @} group futures
1814 _GLIBCXX_END_NAMESPACE_VERSION
1815 } // namespace
1816 
1817 #endif // C++11
1818 
1819 #endif // _GLIBCXX_FUTURE