libstdc++
hashtable_policy.h
Go to the documentation of this file.
1 // Internal policy header for unordered_set and unordered_map -*- C++ -*-
2 
3 // Copyright (C) 2010-2022 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable_policy.h
26  * This is an internal header file, included by other library headers.
27  * Do not attempt to use it directly.
28  * @headername{unordered_map,unordered_set}
29  */
30 
31 #ifndef _HASHTABLE_POLICY_H
32 #define _HASHTABLE_POLICY_H 1
33 
34 #include <tuple> // for std::tuple, std::forward_as_tuple
35 #include <bits/stl_algobase.h> // for std::min, std::is_permutation.
36 #include <ext/aligned_buffer.h> // for __gnu_cxx::__aligned_buffer
37 #include <ext/alloc_traits.h> // for std::__alloc_rebind
38 #include <ext/numeric_traits.h> // for __gnu_cxx::__int_traits
39 
40 namespace std _GLIBCXX_VISIBILITY(default)
41 {
42 _GLIBCXX_BEGIN_NAMESPACE_VERSION
43 /// @cond undocumented
44 
45  template<typename _Key, typename _Value, typename _Alloc,
46  typename _ExtractKey, typename _Equal,
47  typename _Hash, typename _RangeHash, typename _Unused,
48  typename _RehashPolicy, typename _Traits>
49  class _Hashtable;
50 
51 namespace __detail
52 {
53  /**
54  * @defgroup hashtable-detail Base and Implementation Classes
55  * @ingroup unordered_associative_containers
56  * @{
57  */
58  template<typename _Key, typename _Value, typename _ExtractKey,
59  typename _Equal, typename _Hash, typename _RangeHash,
60  typename _Unused, typename _Traits>
61  struct _Hashtable_base;
62 
63  // Helper function: return distance(first, last) for forward
64  // iterators, or 0/1 for input iterators.
65  template<typename _Iterator>
67  __distance_fw(_Iterator __first, _Iterator __last,
69  { return __first != __last ? 1 : 0; }
70 
71  template<typename _Iterator>
73  __distance_fw(_Iterator __first, _Iterator __last,
75  { return std::distance(__first, __last); }
76 
77  template<typename _Iterator>
79  __distance_fw(_Iterator __first, _Iterator __last)
80  { return __distance_fw(__first, __last,
81  std::__iterator_category(__first)); }
82 
83  struct _Identity
84  {
85  template<typename _Tp>
86  _Tp&&
87  operator()(_Tp&& __x) const noexcept
88  { return std::forward<_Tp>(__x); }
89  };
90 
91  struct _Select1st
92  {
93  template<typename _Pair>
94  struct __1st_type;
95 
96  template<typename _Tp, typename _Up>
97  struct __1st_type<pair<_Tp, _Up>>
98  { using type = _Tp; };
99 
100  template<typename _Tp, typename _Up>
101  struct __1st_type<const pair<_Tp, _Up>>
102  { using type = const _Tp; };
103 
104  template<typename _Pair>
105  struct __1st_type<_Pair&>
106  { using type = typename __1st_type<_Pair>::type&; };
107 
108  template<typename _Tp>
109  typename __1st_type<_Tp>::type&&
110  operator()(_Tp&& __x) const noexcept
111  { return std::forward<_Tp>(__x).first; }
112  };
113 
114  template<typename _ExKey>
115  struct _NodeBuilder;
116 
117  template<>
118  struct _NodeBuilder<_Select1st>
119  {
120  template<typename _Kt, typename _Arg, typename _NodeGenerator>
121  static auto
122  _S_build(_Kt&& __k, _Arg&& __arg, const _NodeGenerator& __node_gen)
123  -> typename _NodeGenerator::__node_type*
124  {
125  return __node_gen(std::forward<_Kt>(__k),
126  std::forward<_Arg>(__arg).second);
127  }
128  };
129 
130  template<>
131  struct _NodeBuilder<_Identity>
132  {
133  template<typename _Kt, typename _Arg, typename _NodeGenerator>
134  static auto
135  _S_build(_Kt&& __k, _Arg&&, const _NodeGenerator& __node_gen)
136  -> typename _NodeGenerator::__node_type*
137  { return __node_gen(std::forward<_Kt>(__k)); }
138  };
139 
140  template<typename _NodeAlloc>
141  struct _Hashtable_alloc;
142 
143  // Functor recycling a pool of nodes and using allocation once the pool is
144  // empty.
145  template<typename _NodeAlloc>
146  struct _ReuseOrAllocNode
147  {
148  private:
149  using __node_alloc_type = _NodeAlloc;
150  using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>;
151  using __node_alloc_traits =
152  typename __hashtable_alloc::__node_alloc_traits;
153 
154  public:
155  using __node_type = typename __hashtable_alloc::__node_type;
156 
157  _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h)
158  : _M_nodes(__nodes), _M_h(__h) { }
159  _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete;
160 
161  ~_ReuseOrAllocNode()
162  { _M_h._M_deallocate_nodes(_M_nodes); }
163 
164  template<typename... _Args>
165  __node_type*
166  operator()(_Args&&... __args) const
167  {
168  if (_M_nodes)
169  {
170  __node_type* __node = _M_nodes;
171  _M_nodes = _M_nodes->_M_next();
172  __node->_M_nxt = nullptr;
173  auto& __a = _M_h._M_node_allocator();
174  __node_alloc_traits::destroy(__a, __node->_M_valptr());
175  __try
176  {
177  __node_alloc_traits::construct(__a, __node->_M_valptr(),
178  std::forward<_Args>(__args)...);
179  }
180  __catch(...)
181  {
182  _M_h._M_deallocate_node_ptr(__node);
183  __throw_exception_again;
184  }
185  return __node;
186  }
187  return _M_h._M_allocate_node(std::forward<_Args>(__args)...);
188  }
189 
190  private:
191  mutable __node_type* _M_nodes;
192  __hashtable_alloc& _M_h;
193  };
194 
195  // Functor similar to the previous one but without any pool of nodes to
196  // recycle.
197  template<typename _NodeAlloc>
198  struct _AllocNode
199  {
200  private:
201  using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>;
202 
203  public:
204  using __node_type = typename __hashtable_alloc::__node_type;
205 
206  _AllocNode(__hashtable_alloc& __h)
207  : _M_h(__h) { }
208 
209  template<typename... _Args>
210  __node_type*
211  operator()(_Args&&... __args) const
212  { return _M_h._M_allocate_node(std::forward<_Args>(__args)...); }
213 
214  private:
215  __hashtable_alloc& _M_h;
216  };
217 
218  // Auxiliary types used for all instantiations of _Hashtable nodes
219  // and iterators.
220 
221  /**
222  * struct _Hashtable_traits
223  *
224  * Important traits for hash tables.
225  *
226  * @tparam _Cache_hash_code Boolean value. True if the value of
227  * the hash function is stored along with the value. This is a
228  * time-space tradeoff. Storing it may improve lookup speed by
229  * reducing the number of times we need to call the _Hash or _Equal
230  * functors.
231  *
232  * @tparam _Constant_iterators Boolean value. True if iterator and
233  * const_iterator are both constant iterator types. This is true
234  * for unordered_set and unordered_multiset, false for
235  * unordered_map and unordered_multimap.
236  *
237  * @tparam _Unique_keys Boolean value. True if the return value
238  * of _Hashtable::count(k) is always at most one, false if it may
239  * be an arbitrary number. This is true for unordered_set and
240  * unordered_map, false for unordered_multiset and
241  * unordered_multimap.
242  */
243  template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys>
244  struct _Hashtable_traits
245  {
246  using __hash_cached = __bool_constant<_Cache_hash_code>;
247  using __constant_iterators = __bool_constant<_Constant_iterators>;
248  using __unique_keys = __bool_constant<_Unique_keys>;
249  };
250 
251  /**
252  * struct _Hashtable_hash_traits
253  *
254  * Important traits for hash tables depending on associated hasher.
255  *
256  */
257  template<typename _Hash>
258  struct _Hashtable_hash_traits
259  {
260  static constexpr std::size_t
261  __small_size_threshold() noexcept
262  { return std::__is_fast_hash<_Hash>::value ? 0 : 20; }
263  };
264 
265  /**
266  * struct _Hash_node_base
267  *
268  * Nodes, used to wrap elements stored in the hash table. A policy
269  * template parameter of class template _Hashtable controls whether
270  * nodes also store a hash code. In some cases (e.g. strings) this
271  * may be a performance win.
272  */
273  struct _Hash_node_base
274  {
275  _Hash_node_base* _M_nxt;
276 
277  _Hash_node_base() noexcept : _M_nxt() { }
278 
279  _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { }
280  };
281 
282  /**
283  * struct _Hash_node_value_base
284  *
285  * Node type with the value to store.
286  */
287  template<typename _Value>
288  struct _Hash_node_value_base
289  {
290  typedef _Value value_type;
291 
292  __gnu_cxx::__aligned_buffer<_Value> _M_storage;
293 
294  _Value*
295  _M_valptr() noexcept
296  { return _M_storage._M_ptr(); }
297 
298  const _Value*
299  _M_valptr() const noexcept
300  { return _M_storage._M_ptr(); }
301 
302  _Value&
303  _M_v() noexcept
304  { return *_M_valptr(); }
305 
306  const _Value&
307  _M_v() const noexcept
308  { return *_M_valptr(); }
309  };
310 
311  /**
312  * Primary template struct _Hash_node_code_cache.
313  */
314  template<bool _Cache_hash_code>
315  struct _Hash_node_code_cache
316  { };
317 
318  /**
319  * Specialization for node with cache, struct _Hash_node_code_cache.
320  */
321  template<>
322  struct _Hash_node_code_cache<true>
323  { std::size_t _M_hash_code; };
324 
325  template<typename _Value, bool _Cache_hash_code>
326  struct _Hash_node_value
327  : _Hash_node_value_base<_Value>
328  , _Hash_node_code_cache<_Cache_hash_code>
329  { };
330 
331  /**
332  * Primary template struct _Hash_node.
333  */
334  template<typename _Value, bool _Cache_hash_code>
335  struct _Hash_node
336  : _Hash_node_base
337  , _Hash_node_value<_Value, _Cache_hash_code>
338  {
339  _Hash_node*
340  _M_next() const noexcept
341  { return static_cast<_Hash_node*>(this->_M_nxt); }
342  };
343 
344  /// Base class for node iterators.
345  template<typename _Value, bool _Cache_hash_code>
346  struct _Node_iterator_base
347  {
348  using __node_type = _Hash_node<_Value, _Cache_hash_code>;
349 
350  __node_type* _M_cur;
351 
352  _Node_iterator_base() : _M_cur(nullptr) { }
353  _Node_iterator_base(__node_type* __p) noexcept
354  : _M_cur(__p) { }
355 
356  void
357  _M_incr() noexcept
358  { _M_cur = _M_cur->_M_next(); }
359 
360  friend bool
361  operator==(const _Node_iterator_base& __x, const _Node_iterator_base& __y)
362  noexcept
363  { return __x._M_cur == __y._M_cur; }
364 
365 #if __cpp_impl_three_way_comparison < 201907L
366  friend bool
367  operator!=(const _Node_iterator_base& __x, const _Node_iterator_base& __y)
368  noexcept
369  { return __x._M_cur != __y._M_cur; }
370 #endif
371  };
372 
373  /// Node iterators, used to iterate through all the hashtable.
374  template<typename _Value, bool __constant_iterators, bool __cache>
375  struct _Node_iterator
376  : public _Node_iterator_base<_Value, __cache>
377  {
378  private:
379  using __base_type = _Node_iterator_base<_Value, __cache>;
380  using __node_type = typename __base_type::__node_type;
381 
382  public:
383  using value_type = _Value;
384  using difference_type = std::ptrdiff_t;
385  using iterator_category = std::forward_iterator_tag;
386 
387  using pointer = __conditional_t<__constant_iterators,
388  const value_type*, value_type*>;
389 
390  using reference = __conditional_t<__constant_iterators,
391  const value_type&, value_type&>;
392 
393  _Node_iterator() = default;
394 
395  explicit
396  _Node_iterator(__node_type* __p) noexcept
397  : __base_type(__p) { }
398 
399  reference
400  operator*() const noexcept
401  { return this->_M_cur->_M_v(); }
402 
403  pointer
404  operator->() const noexcept
405  { return this->_M_cur->_M_valptr(); }
406 
407  _Node_iterator&
408  operator++() noexcept
409  {
410  this->_M_incr();
411  return *this;
412  }
413 
414  _Node_iterator
415  operator++(int) noexcept
416  {
417  _Node_iterator __tmp(*this);
418  this->_M_incr();
419  return __tmp;
420  }
421  };
422 
423  /// Node const_iterators, used to iterate through all the hashtable.
424  template<typename _Value, bool __constant_iterators, bool __cache>
425  struct _Node_const_iterator
426  : public _Node_iterator_base<_Value, __cache>
427  {
428  private:
429  using __base_type = _Node_iterator_base<_Value, __cache>;
430  using __node_type = typename __base_type::__node_type;
431 
432  public:
433  typedef _Value value_type;
434  typedef std::ptrdiff_t difference_type;
435  typedef std::forward_iterator_tag iterator_category;
436 
437  typedef const value_type* pointer;
438  typedef const value_type& reference;
439 
440  _Node_const_iterator() = default;
441 
442  explicit
443  _Node_const_iterator(__node_type* __p) noexcept
444  : __base_type(__p) { }
445 
446  _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
447  __cache>& __x) noexcept
448  : __base_type(__x._M_cur) { }
449 
450  reference
451  operator*() const noexcept
452  { return this->_M_cur->_M_v(); }
453 
454  pointer
455  operator->() const noexcept
456  { return this->_M_cur->_M_valptr(); }
457 
458  _Node_const_iterator&
459  operator++() noexcept
460  {
461  this->_M_incr();
462  return *this;
463  }
464 
465  _Node_const_iterator
466  operator++(int) noexcept
467  {
468  _Node_const_iterator __tmp(*this);
469  this->_M_incr();
470  return __tmp;
471  }
472  };
473 
474  // Many of class template _Hashtable's template parameters are policy
475  // classes. These are defaults for the policies.
476 
477  /// Default range hashing function: use division to fold a large number
478  /// into the range [0, N).
479  struct _Mod_range_hashing
480  {
481  typedef std::size_t first_argument_type;
482  typedef std::size_t second_argument_type;
483  typedef std::size_t result_type;
484 
485  result_type
486  operator()(first_argument_type __num,
487  second_argument_type __den) const noexcept
488  { return __num % __den; }
489  };
490 
491  /// Default ranged hash function H. In principle it should be a
492  /// function object composed from objects of type H1 and H2 such that
493  /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
494  /// h1 and h2. So instead we'll just use a tag to tell class template
495  /// hashtable to do that composition.
496  struct _Default_ranged_hash { };
497 
498  /// Default value for rehash policy. Bucket size is (usually) the
499  /// smallest prime that keeps the load factor small enough.
500  struct _Prime_rehash_policy
501  {
502  using __has_load_factor = true_type;
503 
504  _Prime_rehash_policy(float __z = 1.0) noexcept
505  : _M_max_load_factor(__z), _M_next_resize(0) { }
506 
507  float
508  max_load_factor() const noexcept
509  { return _M_max_load_factor; }
510 
511  // Return a bucket size no smaller than n.
512  std::size_t
513  _M_next_bkt(std::size_t __n) const;
514 
515  // Return a bucket count appropriate for n elements
516  std::size_t
517  _M_bkt_for_elements(std::size_t __n) const
518  { return __builtin_ceil(__n / (double)_M_max_load_factor); }
519 
520  // __n_bkt is current bucket count, __n_elt is current element count,
521  // and __n_ins is number of elements to be inserted. Do we need to
522  // increase bucket count? If so, return make_pair(true, n), where n
523  // is the new bucket count. If not, return make_pair(false, 0).
525  _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
526  std::size_t __n_ins) const;
527 
528  typedef std::size_t _State;
529 
530  _State
531  _M_state() const
532  { return _M_next_resize; }
533 
534  void
535  _M_reset() noexcept
536  { _M_next_resize = 0; }
537 
538  void
539  _M_reset(_State __state)
540  { _M_next_resize = __state; }
541 
542  static const std::size_t _S_growth_factor = 2;
543 
544  float _M_max_load_factor;
545  mutable std::size_t _M_next_resize;
546  };
547 
548  /// Range hashing function assuming that second arg is a power of 2.
549  struct _Mask_range_hashing
550  {
551  typedef std::size_t first_argument_type;
552  typedef std::size_t second_argument_type;
553  typedef std::size_t result_type;
554 
555  result_type
556  operator()(first_argument_type __num,
557  second_argument_type __den) const noexcept
558  { return __num & (__den - 1); }
559  };
560 
561  /// Compute closest power of 2 not less than __n
562  inline std::size_t
563  __clp2(std::size_t __n) noexcept
564  {
566  // Equivalent to return __n ? std::bit_ceil(__n) : 0;
567  if (__n < 2)
568  return __n;
569  const unsigned __lz = sizeof(size_t) > sizeof(long)
570  ? __builtin_clzll(__n - 1ull)
571  : __builtin_clzl(__n - 1ul);
572  // Doing two shifts avoids undefined behaviour when __lz == 0.
573  return (size_t(1) << (__int_traits<size_t>::__digits - __lz - 1)) << 1;
574  }
575 
576  /// Rehash policy providing power of 2 bucket numbers. Avoids modulo
577  /// operations.
578  struct _Power2_rehash_policy
579  {
580  using __has_load_factor = true_type;
581 
582  _Power2_rehash_policy(float __z = 1.0) noexcept
583  : _M_max_load_factor(__z), _M_next_resize(0) { }
584 
585  float
586  max_load_factor() const noexcept
587  { return _M_max_load_factor; }
588 
589  // Return a bucket size no smaller than n (as long as n is not above the
590  // highest power of 2).
591  std::size_t
592  _M_next_bkt(std::size_t __n) noexcept
593  {
594  if (__n == 0)
595  // Special case on container 1st initialization with 0 bucket count
596  // hint. We keep _M_next_resize to 0 to make sure that next time we
597  // want to add an element allocation will take place.
598  return 1;
599 
600  const auto __max_width = std::min<size_t>(sizeof(size_t), 8);
601  const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1);
602  std::size_t __res = __clp2(__n);
603 
604  if (__res == 0)
605  __res = __max_bkt;
606  else if (__res == 1)
607  // If __res is 1 we force it to 2 to make sure there will be an
608  // allocation so that nothing need to be stored in the initial
609  // single bucket
610  __res = 2;
611 
612  if (__res == __max_bkt)
613  // Set next resize to the max value so that we never try to rehash again
614  // as we already reach the biggest possible bucket number.
615  // Note that it might result in max_load_factor not being respected.
616  _M_next_resize = size_t(-1);
617  else
618  _M_next_resize
619  = __builtin_floor(__res * (double)_M_max_load_factor);
620 
621  return __res;
622  }
623 
624  // Return a bucket count appropriate for n elements
625  std::size_t
626  _M_bkt_for_elements(std::size_t __n) const noexcept
627  { return __builtin_ceil(__n / (double)_M_max_load_factor); }
628 
629  // __n_bkt is current bucket count, __n_elt is current element count,
630  // and __n_ins is number of elements to be inserted. Do we need to
631  // increase bucket count? If so, return make_pair(true, n), where n
632  // is the new bucket count. If not, return make_pair(false, 0).
634  _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
635  std::size_t __n_ins) noexcept
636  {
637  if (__n_elt + __n_ins > _M_next_resize)
638  {
639  // If _M_next_resize is 0 it means that we have nothing allocated so
640  // far and that we start inserting elements. In this case we start
641  // with an initial bucket size of 11.
642  double __min_bkts
643  = std::max<std::size_t>(__n_elt + __n_ins, _M_next_resize ? 0 : 11)
644  / (double)_M_max_load_factor;
645  if (__min_bkts >= __n_bkt)
646  return { true,
647  _M_next_bkt(std::max<std::size_t>(__builtin_floor(__min_bkts) + 1,
648  __n_bkt * _S_growth_factor)) };
649 
650  _M_next_resize
651  = __builtin_floor(__n_bkt * (double)_M_max_load_factor);
652  return { false, 0 };
653  }
654  else
655  return { false, 0 };
656  }
657 
658  typedef std::size_t _State;
659 
660  _State
661  _M_state() const noexcept
662  { return _M_next_resize; }
663 
664  void
665  _M_reset() noexcept
666  { _M_next_resize = 0; }
667 
668  void
669  _M_reset(_State __state) noexcept
670  { _M_next_resize = __state; }
671 
672  static const std::size_t _S_growth_factor = 2;
673 
674  float _M_max_load_factor;
675  std::size_t _M_next_resize;
676  };
677 
678  // Base classes for std::_Hashtable. We define these base classes
679  // because in some cases we want to do different things depending on
680  // the value of a policy class. In some cases the policy class
681  // affects which member functions and nested typedefs are defined;
682  // we handle that by specializing base class templates. Several of
683  // the base class templates need to access other members of class
684  // template _Hashtable, so we use a variant of the "Curiously
685  // Recurring Template Pattern" (CRTP) technique.
686 
687  /**
688  * Primary class template _Map_base.
689  *
690  * If the hashtable has a value type of the form pair<const T1, T2> and
691  * a key extraction policy (_ExtractKey) that returns the first part
692  * of the pair, the hashtable gets a mapped_type typedef. If it
693  * satisfies those criteria and also has unique keys, then it also
694  * gets an operator[].
695  */
696  template<typename _Key, typename _Value, typename _Alloc,
697  typename _ExtractKey, typename _Equal,
698  typename _Hash, typename _RangeHash, typename _Unused,
699  typename _RehashPolicy, typename _Traits,
700  bool _Unique_keys = _Traits::__unique_keys::value>
701  struct _Map_base { };
702 
703  /// Partial specialization, __unique_keys set to false, std::pair value type.
704  template<typename _Key, typename _Val, typename _Alloc, typename _Equal,
705  typename _Hash, typename _RangeHash, typename _Unused,
706  typename _RehashPolicy, typename _Traits>
707  struct _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal,
708  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>
709  {
710  using mapped_type = _Val;
711  };
712 
713  /// Partial specialization, __unique_keys set to true.
714  template<typename _Key, typename _Val, typename _Alloc, typename _Equal,
715  typename _Hash, typename _RangeHash, typename _Unused,
716  typename _RehashPolicy, typename _Traits>
717  struct _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal,
718  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>
719  {
720  private:
721  using __hashtable_base = _Hashtable_base<_Key, pair<const _Key, _Val>,
722  _Select1st, _Equal, _Hash,
723  _RangeHash, _Unused,
724  _Traits>;
725 
726  using __hashtable = _Hashtable<_Key, pair<const _Key, _Val>, _Alloc,
727  _Select1st, _Equal, _Hash, _RangeHash,
728  _Unused, _RehashPolicy, _Traits>;
729 
730  using __hash_code = typename __hashtable_base::__hash_code;
731 
732  public:
733  using key_type = typename __hashtable_base::key_type;
734  using mapped_type = _Val;
735 
736  mapped_type&
737  operator[](const key_type& __k);
738 
739  mapped_type&
740  operator[](key_type&& __k);
741 
742  // _GLIBCXX_RESOLVE_LIB_DEFECTS
743  // DR 761. unordered_map needs an at() member function.
744  mapped_type&
745  at(const key_type& __k)
746  {
747  auto __ite = static_cast<__hashtable*>(this)->find(__k);
748  if (!__ite._M_cur)
749  __throw_out_of_range(__N("unordered_map::at"));
750  return __ite->second;
751  }
752 
753  const mapped_type&
754  at(const key_type& __k) const
755  {
756  auto __ite = static_cast<const __hashtable*>(this)->find(__k);
757  if (!__ite._M_cur)
758  __throw_out_of_range(__N("unordered_map::at"));
759  return __ite->second;
760  }
761  };
762 
763  template<typename _Key, typename _Val, typename _Alloc, typename _Equal,
764  typename _Hash, typename _RangeHash, typename _Unused,
765  typename _RehashPolicy, typename _Traits>
766  auto
767  _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal,
768  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>::
769  operator[](const key_type& __k)
770  -> mapped_type&
771  {
772  __hashtable* __h = static_cast<__hashtable*>(this);
773  __hash_code __code = __h->_M_hash_code(__k);
774  std::size_t __bkt = __h->_M_bucket_index(__code);
775  if (auto __node = __h->_M_find_node(__bkt, __k, __code))
776  return __node->_M_v().second;
777 
778  typename __hashtable::_Scoped_node __node {
779  __h,
782  std::tuple<>()
783  };
784  auto __pos
785  = __h->_M_insert_unique_node(__bkt, __code, __node._M_node);
786  __node._M_node = nullptr;
787  return __pos->second;
788  }
789 
790  template<typename _Key, typename _Val, typename _Alloc, typename _Equal,
791  typename _Hash, typename _RangeHash, typename _Unused,
792  typename _RehashPolicy, typename _Traits>
793  auto
794  _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal,
795  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>::
796  operator[](key_type&& __k)
797  -> mapped_type&
798  {
799  __hashtable* __h = static_cast<__hashtable*>(this);
800  __hash_code __code = __h->_M_hash_code(__k);
801  std::size_t __bkt = __h->_M_bucket_index(__code);
802  if (auto __node = __h->_M_find_node(__bkt, __k, __code))
803  return __node->_M_v().second;
804 
805  typename __hashtable::_Scoped_node __node {
806  __h,
809  std::tuple<>()
810  };
811  auto __pos
812  = __h->_M_insert_unique_node(__bkt, __code, __node._M_node);
813  __node._M_node = nullptr;
814  return __pos->second;
815  }
816 
817  // Partial specialization for unordered_map<const T, U>, see PR 104174.
818  template<typename _Key, typename _Val, typename _Alloc, typename _Equal,
819  typename _Hash, typename _RangeHash, typename _Unused,
820  typename _RehashPolicy, typename _Traits, bool __uniq>
821  struct _Map_base<const _Key, pair<const _Key, _Val>,
822  _Alloc, _Select1st, _Equal, _Hash,
823  _RangeHash, _Unused, _RehashPolicy, _Traits, __uniq>
824  : _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, _Hash,
825  _RangeHash, _Unused, _RehashPolicy, _Traits, __uniq>
826  { };
827 
828  /**
829  * Primary class template _Insert_base.
830  *
831  * Defines @c insert member functions appropriate to all _Hashtables.
832  */
833  template<typename _Key, typename _Value, typename _Alloc,
834  typename _ExtractKey, typename _Equal,
835  typename _Hash, typename _RangeHash, typename _Unused,
836  typename _RehashPolicy, typename _Traits>
837  struct _Insert_base
838  {
839  protected:
840  using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
841  _Equal, _Hash, _RangeHash,
842  _Unused, _Traits>;
843 
844  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
845  _Hash, _RangeHash,
846  _Unused, _RehashPolicy, _Traits>;
847 
848  using __hash_cached = typename _Traits::__hash_cached;
849  using __constant_iterators = typename _Traits::__constant_iterators;
850 
851  using __hashtable_alloc = _Hashtable_alloc<
852  __alloc_rebind<_Alloc, _Hash_node<_Value,
853  __hash_cached::value>>>;
854 
855  using value_type = typename __hashtable_base::value_type;
856  using size_type = typename __hashtable_base::size_type;
857 
858  using __unique_keys = typename _Traits::__unique_keys;
859  using __node_alloc_type = typename __hashtable_alloc::__node_alloc_type;
860  using __node_gen_type = _AllocNode<__node_alloc_type>;
861 
862  __hashtable&
863  _M_conjure_hashtable()
864  { return *(static_cast<__hashtable*>(this)); }
865 
866  template<typename _InputIterator, typename _NodeGetter>
867  void
868  _M_insert_range(_InputIterator __first, _InputIterator __last,
869  const _NodeGetter&, true_type __uks);
870 
871  template<typename _InputIterator, typename _NodeGetter>
872  void
873  _M_insert_range(_InputIterator __first, _InputIterator __last,
874  const _NodeGetter&, false_type __uks);
875 
876  public:
877  using iterator = _Node_iterator<_Value, __constant_iterators::value,
878  __hash_cached::value>;
879 
880  using const_iterator = _Node_const_iterator<_Value,
881  __constant_iterators::value,
882  __hash_cached::value>;
883 
884  using __ireturn_type = __conditional_t<__unique_keys::value,
886  iterator>;
887 
888  __ireturn_type
889  insert(const value_type& __v)
890  {
891  __hashtable& __h = _M_conjure_hashtable();
892  __node_gen_type __node_gen(__h);
893  return __h._M_insert(__v, __node_gen, __unique_keys{});
894  }
895 
896  iterator
897  insert(const_iterator __hint, const value_type& __v)
898  {
899  __hashtable& __h = _M_conjure_hashtable();
900  __node_gen_type __node_gen(__h);
901  return __h._M_insert(__hint, __v, __node_gen, __unique_keys{});
902  }
903 
904  template<typename _KType, typename... _Args>
906  try_emplace(const_iterator, _KType&& __k, _Args&&... __args)
907  {
908  __hashtable& __h = _M_conjure_hashtable();
909  auto __code = __h._M_hash_code(__k);
910  std::size_t __bkt = __h._M_bucket_index(__code);
911  if (auto __node = __h._M_find_node(__bkt, __k, __code))
912  return { iterator(__node), false };
913 
914  typename __hashtable::_Scoped_node __node {
915  &__h,
917  std::forward_as_tuple(std::forward<_KType>(__k)),
918  std::forward_as_tuple(std::forward<_Args>(__args)...)
919  };
920  auto __it
921  = __h._M_insert_unique_node(__bkt, __code, __node._M_node);
922  __node._M_node = nullptr;
923  return { __it, true };
924  }
925 
926  void
927  insert(initializer_list<value_type> __l)
928  { this->insert(__l.begin(), __l.end()); }
929 
930  template<typename _InputIterator>
931  void
932  insert(_InputIterator __first, _InputIterator __last)
933  {
934  __hashtable& __h = _M_conjure_hashtable();
935  __node_gen_type __node_gen(__h);
936  return _M_insert_range(__first, __last, __node_gen, __unique_keys{});
937  }
938  };
939 
940  template<typename _Key, typename _Value, typename _Alloc,
941  typename _ExtractKey, typename _Equal,
942  typename _Hash, typename _RangeHash, typename _Unused,
943  typename _RehashPolicy, typename _Traits>
944  template<typename _InputIterator, typename _NodeGetter>
945  void
946  _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
947  _Hash, _RangeHash, _Unused,
948  _RehashPolicy, _Traits>::
949  _M_insert_range(_InputIterator __first, _InputIterator __last,
950  const _NodeGetter& __node_gen, true_type __uks)
951  {
952  __hashtable& __h = _M_conjure_hashtable();
953  for (; __first != __last; ++__first)
954  __h._M_insert(*__first, __node_gen, __uks);
955  }
956 
957  template<typename _Key, typename _Value, typename _Alloc,
958  typename _ExtractKey, typename _Equal,
959  typename _Hash, typename _RangeHash, typename _Unused,
960  typename _RehashPolicy, typename _Traits>
961  template<typename _InputIterator, typename _NodeGetter>
962  void
963  _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
964  _Hash, _RangeHash, _Unused,
965  _RehashPolicy, _Traits>::
966  _M_insert_range(_InputIterator __first, _InputIterator __last,
967  const _NodeGetter& __node_gen, false_type __uks)
968  {
969  using __rehash_type = typename __hashtable::__rehash_type;
970  using __rehash_state = typename __hashtable::__rehash_state;
971  using pair_type = std::pair<bool, std::size_t>;
972 
973  size_type __n_elt = __detail::__distance_fw(__first, __last);
974  if (__n_elt == 0)
975  return;
976 
977  __hashtable& __h = _M_conjure_hashtable();
978  __rehash_type& __rehash = __h._M_rehash_policy;
979  const __rehash_state& __saved_state = __rehash._M_state();
980  pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count,
981  __h._M_element_count,
982  __n_elt);
983 
984  if (__do_rehash.first)
985  __h._M_rehash(__do_rehash.second, __saved_state);
986 
987  for (; __first != __last; ++__first)
988  __h._M_insert(*__first, __node_gen, __uks);
989  }
990 
991  /**
992  * Primary class template _Insert.
993  *
994  * Defines @c insert member functions that depend on _Hashtable policies,
995  * via partial specializations.
996  */
997  template<typename _Key, typename _Value, typename _Alloc,
998  typename _ExtractKey, typename _Equal,
999  typename _Hash, typename _RangeHash, typename _Unused,
1000  typename _RehashPolicy, typename _Traits,
1001  bool _Constant_iterators = _Traits::__constant_iterators::value>
1002  struct _Insert;
1003 
1004  /// Specialization.
1005  template<typename _Key, typename _Value, typename _Alloc,
1006  typename _ExtractKey, typename _Equal,
1007  typename _Hash, typename _RangeHash, typename _Unused,
1008  typename _RehashPolicy, typename _Traits>
1009  struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1010  _Hash, _RangeHash, _Unused,
1011  _RehashPolicy, _Traits, true>
1012  : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1013  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>
1014  {
1015  using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
1016  _Equal, _Hash, _RangeHash, _Unused,
1017  _RehashPolicy, _Traits>;
1018 
1019  using value_type = typename __base_type::value_type;
1020  using iterator = typename __base_type::iterator;
1021  using const_iterator = typename __base_type::const_iterator;
1022  using __ireturn_type = typename __base_type::__ireturn_type;
1023 
1024  using __unique_keys = typename __base_type::__unique_keys;
1025  using __hashtable = typename __base_type::__hashtable;
1026  using __node_gen_type = typename __base_type::__node_gen_type;
1027 
1028  using __base_type::insert;
1029 
1030  __ireturn_type
1031  insert(value_type&& __v)
1032  {
1033  __hashtable& __h = this->_M_conjure_hashtable();
1034  __node_gen_type __node_gen(__h);
1035  return __h._M_insert(std::move(__v), __node_gen, __unique_keys{});
1036  }
1037 
1038  iterator
1039  insert(const_iterator __hint, value_type&& __v)
1040  {
1041  __hashtable& __h = this->_M_conjure_hashtable();
1042  __node_gen_type __node_gen(__h);
1043  return __h._M_insert(__hint, std::move(__v), __node_gen,
1044  __unique_keys{});
1045  }
1046  };
1047 
1048  /// Specialization.
1049  template<typename _Key, typename _Value, typename _Alloc,
1050  typename _ExtractKey, typename _Equal,
1051  typename _Hash, typename _RangeHash, typename _Unused,
1052  typename _RehashPolicy, typename _Traits>
1053  struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1054  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>
1055  : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1056  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>
1057  {
1058  using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
1059  _Equal, _Hash, _RangeHash, _Unused,
1060  _RehashPolicy, _Traits>;
1061  using value_type = typename __base_type::value_type;
1062  using iterator = typename __base_type::iterator;
1063  using const_iterator = typename __base_type::const_iterator;
1064 
1065  using __unique_keys = typename __base_type::__unique_keys;
1066  using __hashtable = typename __base_type::__hashtable;
1067  using __ireturn_type = typename __base_type::__ireturn_type;
1068 
1069  using __base_type::insert;
1070 
1071  template<typename _Pair>
1073 
1074  template<typename _Pair>
1075  using _IFcons = std::enable_if<__is_cons<_Pair>::value>;
1076 
1077  template<typename _Pair>
1078  using _IFconsp = typename _IFcons<_Pair>::type;
1079 
1080  template<typename _Pair, typename = _IFconsp<_Pair>>
1081  __ireturn_type
1082  insert(_Pair&& __v)
1083  {
1084  __hashtable& __h = this->_M_conjure_hashtable();
1085  return __h._M_emplace(__unique_keys{}, std::forward<_Pair>(__v));
1086  }
1087 
1088  template<typename _Pair, typename = _IFconsp<_Pair>>
1089  iterator
1090  insert(const_iterator __hint, _Pair&& __v)
1091  {
1092  __hashtable& __h = this->_M_conjure_hashtable();
1093  return __h._M_emplace(__hint, __unique_keys{},
1094  std::forward<_Pair>(__v));
1095  }
1096  };
1097 
1098  template<typename _Policy>
1099  using __has_load_factor = typename _Policy::__has_load_factor;
1100 
1101  /**
1102  * Primary class template _Rehash_base.
1103  *
1104  * Give hashtable the max_load_factor functions and reserve iff the
1105  * rehash policy supports it.
1106  */
1107  template<typename _Key, typename _Value, typename _Alloc,
1108  typename _ExtractKey, typename _Equal,
1109  typename _Hash, typename _RangeHash, typename _Unused,
1110  typename _RehashPolicy, typename _Traits,
1111  typename =
1112  __detected_or_t<false_type, __has_load_factor, _RehashPolicy>>
1113  struct _Rehash_base;
1114 
1115  /// Specialization when rehash policy doesn't provide load factor management.
1116  template<typename _Key, typename _Value, typename _Alloc,
1117  typename _ExtractKey, typename _Equal,
1118  typename _Hash, typename _RangeHash, typename _Unused,
1119  typename _RehashPolicy, typename _Traits>
1120  struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1121  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits,
1122  false_type /* Has load factor */>
1123  {
1124  };
1125 
1126  /// Specialization when rehash policy provide load factor management.
1127  template<typename _Key, typename _Value, typename _Alloc,
1128  typename _ExtractKey, typename _Equal,
1129  typename _Hash, typename _RangeHash, typename _Unused,
1130  typename _RehashPolicy, typename _Traits>
1131  struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1132  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits,
1133  true_type /* Has load factor */>
1134  {
1135  private:
1136  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1137  _Equal, _Hash, _RangeHash, _Unused,
1138  _RehashPolicy, _Traits>;
1139 
1140  public:
1141  float
1142  max_load_factor() const noexcept
1143  {
1144  const __hashtable* __this = static_cast<const __hashtable*>(this);
1145  return __this->__rehash_policy().max_load_factor();
1146  }
1147 
1148  void
1149  max_load_factor(float __z)
1150  {
1151  __hashtable* __this = static_cast<__hashtable*>(this);
1152  __this->__rehash_policy(_RehashPolicy(__z));
1153  }
1154 
1155  void
1156  reserve(std::size_t __n)
1157  {
1158  __hashtable* __this = static_cast<__hashtable*>(this);
1159  __this->rehash(__this->__rehash_policy()._M_bkt_for_elements(__n));
1160  }
1161  };
1162 
1163  /**
1164  * Primary class template _Hashtable_ebo_helper.
1165  *
1166  * Helper class using EBO when it is not forbidden (the type is not
1167  * final) and when it is worth it (the type is empty.)
1168  */
1169  template<int _Nm, typename _Tp,
1170  bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
1171  struct _Hashtable_ebo_helper;
1172 
1173  /// Specialization using EBO.
1174  template<int _Nm, typename _Tp>
1175  struct _Hashtable_ebo_helper<_Nm, _Tp, true>
1176  : private _Tp
1177  {
1178  _Hashtable_ebo_helper() noexcept(noexcept(_Tp())) : _Tp() { }
1179 
1180  template<typename _OtherTp>
1181  _Hashtable_ebo_helper(_OtherTp&& __tp)
1182  : _Tp(std::forward<_OtherTp>(__tp))
1183  { }
1184 
1185  const _Tp& _M_cget() const { return static_cast<const _Tp&>(*this); }
1186  _Tp& _M_get() { return static_cast<_Tp&>(*this); }
1187  };
1188 
1189  /// Specialization not using EBO.
1190  template<int _Nm, typename _Tp>
1191  struct _Hashtable_ebo_helper<_Nm, _Tp, false>
1192  {
1193  _Hashtable_ebo_helper() = default;
1194 
1195  template<typename _OtherTp>
1196  _Hashtable_ebo_helper(_OtherTp&& __tp)
1197  : _M_tp(std::forward<_OtherTp>(__tp))
1198  { }
1199 
1200  const _Tp& _M_cget() const { return _M_tp; }
1201  _Tp& _M_get() { return _M_tp; }
1202 
1203  private:
1204  _Tp _M_tp{};
1205  };
1206 
1207  /**
1208  * Primary class template _Local_iterator_base.
1209  *
1210  * Base class for local iterators, used to iterate within a bucket
1211  * but not between buckets.
1212  */
1213  template<typename _Key, typename _Value, typename _ExtractKey,
1214  typename _Hash, typename _RangeHash, typename _Unused,
1215  bool __cache_hash_code>
1216  struct _Local_iterator_base;
1217 
1218  /**
1219  * Primary class template _Hash_code_base.
1220  *
1221  * Encapsulates two policy issues that aren't quite orthogonal.
1222  * (1) the difference between using a ranged hash function and using
1223  * the combination of a hash function and a range-hashing function.
1224  * In the former case we don't have such things as hash codes, so
1225  * we have a dummy type as placeholder.
1226  * (2) Whether or not we cache hash codes. Caching hash codes is
1227  * meaningless if we have a ranged hash function.
1228  *
1229  * We also put the key extraction objects here, for convenience.
1230  * Each specialization derives from one or more of the template
1231  * parameters to benefit from Ebo. This is important as this type
1232  * is inherited in some cases by the _Local_iterator_base type used
1233  * to implement local_iterator and const_local_iterator. As with
1234  * any iterator type we prefer to make it as small as possible.
1235  */
1236  template<typename _Key, typename _Value, typename _ExtractKey,
1237  typename _Hash, typename _RangeHash, typename _Unused,
1238  bool __cache_hash_code>
1239  struct _Hash_code_base
1240  : private _Hashtable_ebo_helper<1, _Hash>
1241  {
1242  private:
1243  using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>;
1244 
1245  // Gives the local iterator implementation access to _M_bucket_index().
1246  friend struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1247  _Hash, _RangeHash, _Unused, false>;
1248 
1249  public:
1250  typedef _Hash hasher;
1251 
1252  hasher
1253  hash_function() const
1254  { return _M_hash(); }
1255 
1256  protected:
1257  typedef std::size_t __hash_code;
1258 
1259  // We need the default constructor for the local iterators and _Hashtable
1260  // default constructor.
1261  _Hash_code_base() = default;
1262 
1263  _Hash_code_base(const _Hash& __hash) : __ebo_hash(__hash) { }
1264 
1265  __hash_code
1266  _M_hash_code(const _Key& __k) const
1267  {
1268  static_assert(__is_invocable<const _Hash&, const _Key&>{},
1269  "hash function must be invocable with an argument of key type");
1270  return _M_hash()(__k);
1271  }
1272 
1273  template<typename _Kt>
1274  __hash_code
1275  _M_hash_code_tr(const _Kt& __k) const
1276  {
1277  static_assert(__is_invocable<const _Hash&, const _Kt&>{},
1278  "hash function must be invocable with an argument of key type");
1279  return _M_hash()(__k);
1280  }
1281 
1282  __hash_code
1283  _M_hash_code(const _Hash&,
1284  const _Hash_node_value<_Value, true>& __n) const
1285  { return __n._M_hash_code; }
1286 
1287  // Compute hash code using _Hash as __n _M_hash_code, if present, was
1288  // computed using _H2.
1289  template<typename _H2>
1290  __hash_code
1291  _M_hash_code(const _H2&,
1292  const _Hash_node_value<_Value, __cache_hash_code>& __n) const
1293  { return _M_hash_code(_ExtractKey{}(__n._M_v())); }
1294 
1295  __hash_code
1296  _M_hash_code(const _Hash_node_value<_Value, false>& __n) const
1297  { return _M_hash_code(_ExtractKey{}(__n._M_v())); }
1298 
1299  __hash_code
1300  _M_hash_code(const _Hash_node_value<_Value, true>& __n) const
1301  { return __n._M_hash_code; }
1302 
1303  std::size_t
1304  _M_bucket_index(__hash_code __c, std::size_t __bkt_count) const
1305  { return _RangeHash{}(__c, __bkt_count); }
1306 
1307  std::size_t
1308  _M_bucket_index(const _Hash_node_value<_Value, false>& __n,
1309  std::size_t __bkt_count) const
1310  noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>()))
1311  && noexcept(declval<const _RangeHash&>()((__hash_code)0,
1312  (std::size_t)0)) )
1313  {
1314  return _RangeHash{}(_M_hash_code(_ExtractKey{}(__n._M_v())),
1315  __bkt_count);
1316  }
1317 
1318  std::size_t
1319  _M_bucket_index(const _Hash_node_value<_Value, true>& __n,
1320  std::size_t __bkt_count) const
1321  noexcept( noexcept(declval<const _RangeHash&>()((__hash_code)0,
1322  (std::size_t)0)) )
1323  { return _RangeHash{}(__n._M_hash_code, __bkt_count); }
1324 
1325  void
1326  _M_store_code(_Hash_node_code_cache<false>&, __hash_code) const
1327  { }
1328 
1329  void
1330  _M_copy_code(_Hash_node_code_cache<false>&,
1331  const _Hash_node_code_cache<false>&) const
1332  { }
1333 
1334  void
1335  _M_store_code(_Hash_node_code_cache<true>& __n, __hash_code __c) const
1336  { __n._M_hash_code = __c; }
1337 
1338  void
1339  _M_copy_code(_Hash_node_code_cache<true>& __to,
1340  const _Hash_node_code_cache<true>& __from) const
1341  { __to._M_hash_code = __from._M_hash_code; }
1342 
1343  void
1344  _M_swap(_Hash_code_base& __x)
1345  { std::swap(__ebo_hash::_M_get(), __x.__ebo_hash::_M_get()); }
1346 
1347  const _Hash&
1348  _M_hash() const { return __ebo_hash::_M_cget(); }
1349  };
1350 
1351  /// Partial specialization used when nodes contain a cached hash code.
1352  template<typename _Key, typename _Value, typename _ExtractKey,
1353  typename _Hash, typename _RangeHash, typename _Unused>
1354  struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1355  _Hash, _RangeHash, _Unused, true>
1356  : public _Node_iterator_base<_Value, true>
1357  {
1358  protected:
1359  using __base_node_iter = _Node_iterator_base<_Value, true>;
1360  using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1361  _Hash, _RangeHash, _Unused, true>;
1362 
1363  _Local_iterator_base() = default;
1364  _Local_iterator_base(const __hash_code_base&,
1365  _Hash_node<_Value, true>* __p,
1366  std::size_t __bkt, std::size_t __bkt_count)
1367  : __base_node_iter(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count)
1368  { }
1369 
1370  void
1371  _M_incr()
1372  {
1373  __base_node_iter::_M_incr();
1374  if (this->_M_cur)
1375  {
1376  std::size_t __bkt
1377  = _RangeHash{}(this->_M_cur->_M_hash_code, _M_bucket_count);
1378  if (__bkt != _M_bucket)
1379  this->_M_cur = nullptr;
1380  }
1381  }
1382 
1383  std::size_t _M_bucket;
1384  std::size_t _M_bucket_count;
1385 
1386  public:
1387  std::size_t
1388  _M_get_bucket() const { return _M_bucket; } // for debug mode
1389  };
1390 
1391  // Uninitialized storage for a _Hash_code_base.
1392  // This type is DefaultConstructible and Assignable even if the
1393  // _Hash_code_base type isn't, so that _Local_iterator_base<..., false>
1394  // can be DefaultConstructible and Assignable.
1395  template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value>
1396  struct _Hash_code_storage
1397  {
1398  __gnu_cxx::__aligned_buffer<_Tp> _M_storage;
1399 
1400  _Tp*
1401  _M_h() { return _M_storage._M_ptr(); }
1402 
1403  const _Tp*
1404  _M_h() const { return _M_storage._M_ptr(); }
1405  };
1406 
1407  // Empty partial specialization for empty _Hash_code_base types.
1408  template<typename _Tp>
1409  struct _Hash_code_storage<_Tp, true>
1410  {
1411  static_assert( std::is_empty<_Tp>::value, "Type must be empty" );
1412 
1413  // As _Tp is an empty type there will be no bytes written/read through
1414  // the cast pointer, so no strict-aliasing violation.
1415  _Tp*
1416  _M_h() { return reinterpret_cast<_Tp*>(this); }
1417 
1418  const _Tp*
1419  _M_h() const { return reinterpret_cast<const _Tp*>(this); }
1420  };
1421 
1422  template<typename _Key, typename _Value, typename _ExtractKey,
1423  typename _Hash, typename _RangeHash, typename _Unused>
1424  using __hash_code_for_local_iter
1425  = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey,
1426  _Hash, _RangeHash, _Unused, false>>;
1427 
1428  // Partial specialization used when hash codes are not cached
1429  template<typename _Key, typename _Value, typename _ExtractKey,
1430  typename _Hash, typename _RangeHash, typename _Unused>
1431  struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1432  _Hash, _RangeHash, _Unused, false>
1433  : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _Hash, _RangeHash,
1434  _Unused>
1435  , _Node_iterator_base<_Value, false>
1436  {
1437  protected:
1438  using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1439  _Hash, _RangeHash, _Unused, false>;
1440  using __node_iter_base = _Node_iterator_base<_Value, false>;
1441 
1442  _Local_iterator_base() : _M_bucket_count(-1) { }
1443 
1444  _Local_iterator_base(const __hash_code_base& __base,
1445  _Hash_node<_Value, false>* __p,
1446  std::size_t __bkt, std::size_t __bkt_count)
1447  : __node_iter_base(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count)
1448  { _M_init(__base); }
1449 
1450  ~_Local_iterator_base()
1451  {
1452  if (_M_bucket_count != size_t(-1))
1453  _M_destroy();
1454  }
1455 
1456  _Local_iterator_base(const _Local_iterator_base& __iter)
1457  : __node_iter_base(__iter._M_cur), _M_bucket(__iter._M_bucket)
1458  , _M_bucket_count(__iter._M_bucket_count)
1459  {
1460  if (_M_bucket_count != size_t(-1))
1461  _M_init(*__iter._M_h());
1462  }
1463 
1464  _Local_iterator_base&
1465  operator=(const _Local_iterator_base& __iter)
1466  {
1467  if (_M_bucket_count != -1)
1468  _M_destroy();
1469  this->_M_cur = __iter._M_cur;
1470  _M_bucket = __iter._M_bucket;
1471  _M_bucket_count = __iter._M_bucket_count;
1472  if (_M_bucket_count != -1)
1473  _M_init(*__iter._M_h());
1474  return *this;
1475  }
1476 
1477  void
1478  _M_incr()
1479  {
1480  __node_iter_base::_M_incr();
1481  if (this->_M_cur)
1482  {
1483  std::size_t __bkt = this->_M_h()->_M_bucket_index(*this->_M_cur,
1484  _M_bucket_count);
1485  if (__bkt != _M_bucket)
1486  this->_M_cur = nullptr;
1487  }
1488  }
1489 
1490  std::size_t _M_bucket;
1491  std::size_t _M_bucket_count;
1492 
1493  void
1494  _M_init(const __hash_code_base& __base)
1495  { ::new(this->_M_h()) __hash_code_base(__base); }
1496 
1497  void
1498  _M_destroy() { this->_M_h()->~__hash_code_base(); }
1499 
1500  public:
1501  std::size_t
1502  _M_get_bucket() const { return _M_bucket; } // for debug mode
1503  };
1504 
1505  /// local iterators
1506  template<typename _Key, typename _Value, typename _ExtractKey,
1507  typename _Hash, typename _RangeHash, typename _Unused,
1508  bool __constant_iterators, bool __cache>
1509  struct _Local_iterator
1510  : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1511  _Hash, _RangeHash, _Unused, __cache>
1512  {
1513  private:
1514  using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1515  _Hash, _RangeHash, _Unused, __cache>;
1516  using __hash_code_base = typename __base_type::__hash_code_base;
1517 
1518  public:
1519  using value_type = _Value;
1520  using pointer = __conditional_t<__constant_iterators,
1521  const value_type*, value_type*>;
1522  using reference = __conditional_t<__constant_iterators,
1523  const value_type&, value_type&>;
1524  using difference_type = ptrdiff_t;
1525  using iterator_category = forward_iterator_tag;
1526 
1527  _Local_iterator() = default;
1528 
1529  _Local_iterator(const __hash_code_base& __base,
1530  _Hash_node<_Value, __cache>* __n,
1531  std::size_t __bkt, std::size_t __bkt_count)
1532  : __base_type(__base, __n, __bkt, __bkt_count)
1533  { }
1534 
1535  reference
1536  operator*() const
1537  { return this->_M_cur->_M_v(); }
1538 
1539  pointer
1540  operator->() const
1541  { return this->_M_cur->_M_valptr(); }
1542 
1543  _Local_iterator&
1544  operator++()
1545  {
1546  this->_M_incr();
1547  return *this;
1548  }
1549 
1550  _Local_iterator
1551  operator++(int)
1552  {
1553  _Local_iterator __tmp(*this);
1554  this->_M_incr();
1555  return __tmp;
1556  }
1557  };
1558 
1559  /// local const_iterators
1560  template<typename _Key, typename _Value, typename _ExtractKey,
1561  typename _Hash, typename _RangeHash, typename _Unused,
1562  bool __constant_iterators, bool __cache>
1563  struct _Local_const_iterator
1564  : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1565  _Hash, _RangeHash, _Unused, __cache>
1566  {
1567  private:
1568  using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1569  _Hash, _RangeHash, _Unused, __cache>;
1570  using __hash_code_base = typename __base_type::__hash_code_base;
1571 
1572  public:
1573  typedef _Value value_type;
1574  typedef const value_type* pointer;
1575  typedef const value_type& reference;
1576  typedef std::ptrdiff_t difference_type;
1577  typedef std::forward_iterator_tag iterator_category;
1578 
1579  _Local_const_iterator() = default;
1580 
1581  _Local_const_iterator(const __hash_code_base& __base,
1582  _Hash_node<_Value, __cache>* __n,
1583  std::size_t __bkt, std::size_t __bkt_count)
1584  : __base_type(__base, __n, __bkt, __bkt_count)
1585  { }
1586 
1587  _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey,
1588  _Hash, _RangeHash, _Unused,
1589  __constant_iterators,
1590  __cache>& __x)
1591  : __base_type(__x)
1592  { }
1593 
1594  reference
1595  operator*() const
1596  { return this->_M_cur->_M_v(); }
1597 
1598  pointer
1599  operator->() const
1600  { return this->_M_cur->_M_valptr(); }
1601 
1602  _Local_const_iterator&
1603  operator++()
1604  {
1605  this->_M_incr();
1606  return *this;
1607  }
1608 
1609  _Local_const_iterator
1610  operator++(int)
1611  {
1612  _Local_const_iterator __tmp(*this);
1613  this->_M_incr();
1614  return __tmp;
1615  }
1616  };
1617 
1618  /**
1619  * Primary class template _Hashtable_base.
1620  *
1621  * Helper class adding management of _Equal functor to
1622  * _Hash_code_base type.
1623  *
1624  * Base class templates are:
1625  * - __detail::_Hash_code_base
1626  * - __detail::_Hashtable_ebo_helper
1627  */
1628  template<typename _Key, typename _Value, typename _ExtractKey,
1629  typename _Equal, typename _Hash, typename _RangeHash,
1630  typename _Unused, typename _Traits>
1631  struct _Hashtable_base
1632  : public _Hash_code_base<_Key, _Value, _ExtractKey, _Hash, _RangeHash,
1633  _Unused, _Traits::__hash_cached::value>,
1634  private _Hashtable_ebo_helper<0, _Equal>
1635  {
1636  public:
1637  typedef _Key key_type;
1638  typedef _Value value_type;
1639  typedef _Equal key_equal;
1640  typedef std::size_t size_type;
1641  typedef std::ptrdiff_t difference_type;
1642 
1643  using __traits_type = _Traits;
1644  using __hash_cached = typename __traits_type::__hash_cached;
1645 
1646  using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1647  _Hash, _RangeHash, _Unused,
1648  __hash_cached::value>;
1649 
1650  using __hash_code = typename __hash_code_base::__hash_code;
1651 
1652  private:
1653  using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>;
1654 
1655  static bool
1656  _S_equals(__hash_code, const _Hash_node_code_cache<false>&)
1657  { return true; }
1658 
1659  static bool
1660  _S_node_equals(const _Hash_node_code_cache<false>&,
1661  const _Hash_node_code_cache<false>&)
1662  { return true; }
1663 
1664  static bool
1665  _S_equals(__hash_code __c, const _Hash_node_code_cache<true>& __n)
1666  { return __c == __n._M_hash_code; }
1667 
1668  static bool
1669  _S_node_equals(const _Hash_node_code_cache<true>& __lhn,
1670  const _Hash_node_code_cache<true>& __rhn)
1671  { return __lhn._M_hash_code == __rhn._M_hash_code; }
1672 
1673  protected:
1674  _Hashtable_base() = default;
1675 
1676  _Hashtable_base(const _Hash& __hash, const _Equal& __eq)
1677  : __hash_code_base(__hash), _EqualEBO(__eq)
1678  { }
1679 
1680  bool
1681  _M_key_equals(const _Key& __k,
1682  const _Hash_node_value<_Value,
1683  __hash_cached::value>& __n) const
1684  {
1685  static_assert(__is_invocable<const _Equal&, const _Key&, const _Key&>{},
1686  "key equality predicate must be invocable with two arguments of "
1687  "key type");
1688  return _M_eq()(__k, _ExtractKey{}(__n._M_v()));
1689  }
1690 
1691  template<typename _Kt>
1692  bool
1693  _M_key_equals_tr(const _Kt& __k,
1694  const _Hash_node_value<_Value,
1695  __hash_cached::value>& __n) const
1696  {
1697  static_assert(
1698  __is_invocable<const _Equal&, const _Kt&, const _Key&>{},
1699  "key equality predicate must be invocable with two arguments of "
1700  "key type");
1701  return _M_eq()(__k, _ExtractKey{}(__n._M_v()));
1702  }
1703 
1704  bool
1705  _M_equals(const _Key& __k, __hash_code __c,
1706  const _Hash_node_value<_Value, __hash_cached::value>& __n) const
1707  { return _S_equals(__c, __n) && _M_key_equals(__k, __n); }
1708 
1709  template<typename _Kt>
1710  bool
1711  _M_equals_tr(const _Kt& __k, __hash_code __c,
1712  const _Hash_node_value<_Value,
1713  __hash_cached::value>& __n) const
1714  { return _S_equals(__c, __n) && _M_key_equals_tr(__k, __n); }
1715 
1716  bool
1717  _M_node_equals(
1718  const _Hash_node_value<_Value, __hash_cached::value>& __lhn,
1719  const _Hash_node_value<_Value, __hash_cached::value>& __rhn) const
1720  {
1721  return _S_node_equals(__lhn, __rhn)
1722  && _M_key_equals(_ExtractKey{}(__lhn._M_v()), __rhn);
1723  }
1724 
1725  void
1726  _M_swap(_Hashtable_base& __x)
1727  {
1728  __hash_code_base::_M_swap(__x);
1729  std::swap(_EqualEBO::_M_get(), __x._EqualEBO::_M_get());
1730  }
1731 
1732  const _Equal&
1733  _M_eq() const { return _EqualEBO::_M_cget(); }
1734  };
1735 
1736  /**
1737  * Primary class template _Equality.
1738  *
1739  * This is for implementing equality comparison for unordered
1740  * containers, per N3068, by John Lakos and Pablo Halpern.
1741  * Algorithmically, we follow closely the reference implementations
1742  * therein.
1743  */
1744  template<typename _Key, typename _Value, typename _Alloc,
1745  typename _ExtractKey, typename _Equal,
1746  typename _Hash, typename _RangeHash, typename _Unused,
1747  typename _RehashPolicy, typename _Traits,
1748  bool _Unique_keys = _Traits::__unique_keys::value>
1749  struct _Equality;
1750 
1751  /// unordered_map and unordered_set specializations.
1752  template<typename _Key, typename _Value, typename _Alloc,
1753  typename _ExtractKey, typename _Equal,
1754  typename _Hash, typename _RangeHash, typename _Unused,
1755  typename _RehashPolicy, typename _Traits>
1756  struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1757  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>
1758  {
1759  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1760  _Hash, _RangeHash, _Unused,
1761  _RehashPolicy, _Traits>;
1762 
1763  bool
1764  _M_equal(const __hashtable&) const;
1765  };
1766 
1767  template<typename _Key, typename _Value, typename _Alloc,
1768  typename _ExtractKey, typename _Equal,
1769  typename _Hash, typename _RangeHash, typename _Unused,
1770  typename _RehashPolicy, typename _Traits>
1771  bool
1772  _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1773  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>::
1774  _M_equal(const __hashtable& __other) const
1775  {
1776  using __node_type = typename __hashtable::__node_type;
1777  const __hashtable* __this = static_cast<const __hashtable*>(this);
1778  if (__this->size() != __other.size())
1779  return false;
1780 
1781  for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
1782  {
1783  std::size_t __ybkt = __other._M_bucket_index(*__itx._M_cur);
1784  auto __prev_n = __other._M_buckets[__ybkt];
1785  if (!__prev_n)
1786  return false;
1787 
1788  for (__node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);;
1789  __n = __n->_M_next())
1790  {
1791  if (__n->_M_v() == *__itx)
1792  break;
1793 
1794  if (!__n->_M_nxt
1795  || __other._M_bucket_index(*__n->_M_next()) != __ybkt)
1796  return false;
1797  }
1798  }
1799 
1800  return true;
1801  }
1802 
1803  /// unordered_multiset and unordered_multimap specializations.
1804  template<typename _Key, typename _Value, typename _Alloc,
1805  typename _ExtractKey, typename _Equal,
1806  typename _Hash, typename _RangeHash, typename _Unused,
1807  typename _RehashPolicy, typename _Traits>
1808  struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1809  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>
1810  {
1811  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1812  _Hash, _RangeHash, _Unused,
1813  _RehashPolicy, _Traits>;
1814 
1815  bool
1816  _M_equal(const __hashtable&) const;
1817  };
1818 
1819  template<typename _Key, typename _Value, typename _Alloc,
1820  typename _ExtractKey, typename _Equal,
1821  typename _Hash, typename _RangeHash, typename _Unused,
1822  typename _RehashPolicy, typename _Traits>
1823  bool
1824  _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1825  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>::
1826  _M_equal(const __hashtable& __other) const
1827  {
1828  using __node_type = typename __hashtable::__node_type;
1829  const __hashtable* __this = static_cast<const __hashtable*>(this);
1830  if (__this->size() != __other.size())
1831  return false;
1832 
1833  for (auto __itx = __this->begin(); __itx != __this->end();)
1834  {
1835  std::size_t __x_count = 1;
1836  auto __itx_end = __itx;
1837  for (++__itx_end; __itx_end != __this->end()
1838  && __this->key_eq()(_ExtractKey{}(*__itx),
1839  _ExtractKey{}(*__itx_end));
1840  ++__itx_end)
1841  ++__x_count;
1842 
1843  std::size_t __ybkt = __other._M_bucket_index(*__itx._M_cur);
1844  auto __y_prev_n = __other._M_buckets[__ybkt];
1845  if (!__y_prev_n)
1846  return false;
1847 
1848  __node_type* __y_n = static_cast<__node_type*>(__y_prev_n->_M_nxt);
1849  for (;;)
1850  {
1851  if (__this->key_eq()(_ExtractKey{}(__y_n->_M_v()),
1852  _ExtractKey{}(*__itx)))
1853  break;
1854 
1855  auto __y_ref_n = __y_n;
1856  for (__y_n = __y_n->_M_next(); __y_n; __y_n = __y_n->_M_next())
1857  if (!__other._M_node_equals(*__y_ref_n, *__y_n))
1858  break;
1859 
1860  if (!__y_n || __other._M_bucket_index(*__y_n) != __ybkt)
1861  return false;
1862  }
1863 
1864  typename __hashtable::const_iterator __ity(__y_n);
1865  for (auto __ity_end = __ity; __ity_end != __other.end(); ++__ity_end)
1866  if (--__x_count == 0)
1867  break;
1868 
1869  if (__x_count != 0)
1870  return false;
1871 
1872  if (!std::is_permutation(__itx, __itx_end, __ity))
1873  return false;
1874 
1875  __itx = __itx_end;
1876  }
1877  return true;
1878  }
1879 
1880  /**
1881  * This type deals with all allocation and keeps an allocator instance
1882  * through inheritance to benefit from EBO when possible.
1883  */
1884  template<typename _NodeAlloc>
1885  struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc>
1886  {
1887  private:
1888  using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>;
1889 
1890  template<typename>
1891  struct __get_value_type;
1892  template<typename _Val, bool _Cache_hash_code>
1893  struct __get_value_type<_Hash_node<_Val, _Cache_hash_code>>
1894  { using type = _Val; };
1895 
1896  public:
1897  using __node_type = typename _NodeAlloc::value_type;
1898  using __node_alloc_type = _NodeAlloc;
1899  // Use __gnu_cxx to benefit from _S_always_equal and al.
1900  using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>;
1901 
1902  using __value_alloc_traits = typename __node_alloc_traits::template
1903  rebind_traits<typename __get_value_type<__node_type>::type>;
1904 
1905  using __node_ptr = __node_type*;
1906  using __node_base = _Hash_node_base;
1907  using __node_base_ptr = __node_base*;
1908  using __buckets_alloc_type =
1909  __alloc_rebind<__node_alloc_type, __node_base_ptr>;
1910  using __buckets_alloc_traits = std::allocator_traits<__buckets_alloc_type>;
1911  using __buckets_ptr = __node_base_ptr*;
1912 
1913  _Hashtable_alloc() = default;
1914  _Hashtable_alloc(const _Hashtable_alloc&) = default;
1915  _Hashtable_alloc(_Hashtable_alloc&&) = default;
1916 
1917  template<typename _Alloc>
1918  _Hashtable_alloc(_Alloc&& __a)
1919  : __ebo_node_alloc(std::forward<_Alloc>(__a))
1920  { }
1921 
1922  __node_alloc_type&
1923  _M_node_allocator()
1924  { return __ebo_node_alloc::_M_get(); }
1925 
1926  const __node_alloc_type&
1927  _M_node_allocator() const
1928  { return __ebo_node_alloc::_M_cget(); }
1929 
1930  // Allocate a node and construct an element within it.
1931  template<typename... _Args>
1932  __node_ptr
1933  _M_allocate_node(_Args&&... __args);
1934 
1935  // Destroy the element within a node and deallocate the node.
1936  void
1937  _M_deallocate_node(__node_ptr __n);
1938 
1939  // Deallocate a node.
1940  void
1941  _M_deallocate_node_ptr(__node_ptr __n);
1942 
1943  // Deallocate the linked list of nodes pointed to by __n.
1944  // The elements within the nodes are destroyed.
1945  void
1946  _M_deallocate_nodes(__node_ptr __n);
1947 
1948  __buckets_ptr
1949  _M_allocate_buckets(std::size_t __bkt_count);
1950 
1951  void
1952  _M_deallocate_buckets(__buckets_ptr, std::size_t __bkt_count);
1953  };
1954 
1955  // Definitions of class template _Hashtable_alloc's out-of-line member
1956  // functions.
1957  template<typename _NodeAlloc>
1958  template<typename... _Args>
1959  auto
1960  _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args)
1961  -> __node_ptr
1962  {
1963  auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1);
1964  __node_ptr __n = std::__to_address(__nptr);
1965  __try
1966  {
1967  ::new ((void*)__n) __node_type;
1968  __node_alloc_traits::construct(_M_node_allocator(),
1969  __n->_M_valptr(),
1970  std::forward<_Args>(__args)...);
1971  return __n;
1972  }
1973  __catch(...)
1974  {
1975  __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1);
1976  __throw_exception_again;
1977  }
1978  }
1979 
1980  template<typename _NodeAlloc>
1981  void
1982  _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_ptr __n)
1983  {
1984  __node_alloc_traits::destroy(_M_node_allocator(), __n->_M_valptr());
1985  _M_deallocate_node_ptr(__n);
1986  }
1987 
1988  template<typename _NodeAlloc>
1989  void
1990  _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node_ptr(__node_ptr __n)
1991  {
1992  typedef typename __node_alloc_traits::pointer _Ptr;
1993  auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n);
1994  __n->~__node_type();
1995  __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1);
1996  }
1997 
1998  template<typename _NodeAlloc>
1999  void
2000  _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_ptr __n)
2001  {
2002  while (__n)
2003  {
2004  __node_ptr __tmp = __n;
2005  __n = __n->_M_next();
2006  _M_deallocate_node(__tmp);
2007  }
2008  }
2009 
2010  template<typename _NodeAlloc>
2011  auto
2012  _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __bkt_count)
2013  -> __buckets_ptr
2014  {
2015  __buckets_alloc_type __alloc(_M_node_allocator());
2016 
2017  auto __ptr = __buckets_alloc_traits::allocate(__alloc, __bkt_count);
2018  __buckets_ptr __p = std::__to_address(__ptr);
2019  __builtin_memset(__p, 0, __bkt_count * sizeof(__node_base_ptr));
2020  return __p;
2021  }
2022 
2023  template<typename _NodeAlloc>
2024  void
2025  _Hashtable_alloc<_NodeAlloc>::
2026  _M_deallocate_buckets(__buckets_ptr __bkts,
2027  std::size_t __bkt_count)
2028  {
2029  typedef typename __buckets_alloc_traits::pointer _Ptr;
2030  auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts);
2031  __buckets_alloc_type __alloc(_M_node_allocator());
2032  __buckets_alloc_traits::deallocate(__alloc, __ptr, __bkt_count);
2033  }
2034 
2035  ///@} hashtable-detail
2036 } // namespace __detail
2037 /// @endcond
2038 _GLIBCXX_END_NAMESPACE_VERSION
2039 } // namespace std
2040 
2041 #endif // _HASHTABLE_POLICY_H
constexpr complex< _Tp > operator*(const complex< _Tp > &__x, const complex< _Tp > &__y)
Return new complex value x times y.
Definition: complex:392
integral_constant< bool, true > true_type
The type used as a compile-time boolean with true value.
Definition: type_traits:82
integral_constant< bool, false > false_type
The type used as a compile-time boolean with false value.
Definition: type_traits:85
constexpr piecewise_construct_t piecewise_construct
Tag for piecewise construction of std::pair objects.
Definition: stl_pair.h:83
constexpr std::remove_reference< _Tp >::type && move(_Tp &&__t) noexcept
Convert a value to an rvalue.
Definition: move.h:104
constexpr tuple< _Elements &&... > forward_as_tuple(_Elements &&... __args) noexcept
std::forward_as_tuple
Definition: tuple:1589
constexpr _Tp && forward(typename std::remove_reference< _Tp >::type &__t) noexcept
Forward an lvalue.
Definition: move.h:77
void swap(any &__x, any &__y) noexcept
Exchange the states of two any objects.
Definition: any:429
constexpr iterator_traits< _Iter >::iterator_category __iterator_category(const _Iter &)
ISO C++ entities toplevel namespace is std.
constexpr iterator_traits< _InputIterator >::difference_type distance(_InputIterator __first, _InputIterator __last)
A generalization of pointer arithmetic.
__numeric_traits_integer< _Tp > __int_traits
Convenience alias for __numeric_traits<integer-type>.
constexpr _Iterator __base(_Iterator __it)
Primary class template, tuple.
Definition: tuple:610
is_empty
Definition: type_traits:782
is_constructible
Definition: type_traits:979
Define a member typedef type only if a boolean constant is true.
Definition: type_traits:2229
Uniform interface to all allocator types.
Traits class for iterators.
Uniform interface to all pointer-like types.
Definition: ptr_traits.h:195
Struct holding two objects of arbitrary type.
Definition: stl_pair.h:187
Marking input iterators.
Forward iterators support a superset of input iterator operations.
Uniform interface to C++98 and C++11 allocators.