libstdc++
stl_multimap.h
Go to the documentation of this file.
1 // Multimap implementation -*- C++ -*-
2 
3 // Copyright (C) 2001-2022 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /*
26  *
27  * Copyright (c) 1994
28  * Hewlett-Packard Company
29  *
30  * Permission to use, copy, modify, distribute and sell this software
31  * and its documentation for any purpose is hereby granted without fee,
32  * provided that the above copyright notice appear in all copies and
33  * that both that copyright notice and this permission notice appear
34  * in supporting documentation. Hewlett-Packard Company makes no
35  * representations about the suitability of this software for any
36  * purpose. It is provided "as is" without express or implied warranty.
37  *
38  *
39  * Copyright (c) 1996,1997
40  * Silicon Graphics Computer Systems, Inc.
41  *
42  * Permission to use, copy, modify, distribute and sell this software
43  * and its documentation for any purpose is hereby granted without fee,
44  * provided that the above copyright notice appear in all copies and
45  * that both that copyright notice and this permission notice appear
46  * in supporting documentation. Silicon Graphics makes no
47  * representations about the suitability of this software for any
48  * purpose. It is provided "as is" without express or implied warranty.
49  */
50 
51 /** @file bits/stl_multimap.h
52  * This is an internal header file, included by other library headers.
53  * Do not attempt to use it directly. @headername{map}
54  */
55 
56 #ifndef _STL_MULTIMAP_H
57 #define _STL_MULTIMAP_H 1
58 
59 #include <bits/concept_check.h>
60 #if __cplusplus >= 201103L
61 #include <initializer_list>
62 #endif
63 
64 namespace std _GLIBCXX_VISIBILITY(default)
65 {
66 _GLIBCXX_BEGIN_NAMESPACE_VERSION
67 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
68 
69  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
70  class map;
71 
72  /**
73  * @brief A standard container made up of (key,value) pairs, which can be
74  * retrieved based on a key, in logarithmic time.
75  *
76  * @ingroup associative_containers
77  *
78  * @tparam _Key Type of key objects.
79  * @tparam _Tp Type of mapped objects.
80  * @tparam _Compare Comparison function object type, defaults to less<_Key>.
81  * @tparam _Alloc Allocator type, defaults to
82  * allocator<pair<const _Key, _Tp>.
83  *
84  * Meets the requirements of a <a href="tables.html#65">container</a>, a
85  * <a href="tables.html#66">reversible container</a>, and an
86  * <a href="tables.html#69">associative container</a> (using equivalent
87  * keys). For a @c multimap<Key,T> the key_type is Key, the mapped_type
88  * is T, and the value_type is std::pair<const Key,T>.
89  *
90  * Multimaps support bidirectional iterators.
91  *
92  * The private tree data is declared exactly the same way for map and
93  * multimap; the distinction is made entirely in how the tree functions are
94  * called (*_unique versus *_equal, same as the standard).
95  */
96  template <typename _Key, typename _Tp,
97  typename _Compare = std::less<_Key>,
98  typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
99  class multimap
100  {
101  public:
102  typedef _Key key_type;
103  typedef _Tp mapped_type;
105  typedef _Compare key_compare;
106  typedef _Alloc allocator_type;
107 
108  private:
109 #ifdef _GLIBCXX_CONCEPT_CHECKS
110  // concept requirements
111  typedef typename _Alloc::value_type _Alloc_value_type;
112 # if __cplusplus < 201103L
113  __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
114 # endif
115  __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
116  _BinaryFunctionConcept)
117  __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
118 #endif
119 
120 #if __cplusplus >= 201103L
121 #if __cplusplus > 201703L || defined __STRICT_ANSI__
123  "std::multimap must have the same value_type as its allocator");
124 #endif
125 #endif
126 
127  public:
128 #pragma GCC diagnostic push
129 #pragma GCC diagnostic ignored "-Wdeprecated-declarations"
130  class value_compare
131  : public std::binary_function<value_type, value_type, bool>
132  {
133  friend class multimap<_Key, _Tp, _Compare, _Alloc>;
134  protected:
135  _Compare comp;
136 
137  value_compare(_Compare __c)
138  : comp(__c) { }
139 
140  public:
141  bool operator()(const value_type& __x, const value_type& __y) const
142  { return comp(__x.first, __y.first); }
143  };
144 #pragma GCC diagnostic pop
145 
146  private:
147  /// This turns a red-black tree into a [multi]map.
149  rebind<value_type>::other _Pair_alloc_type;
150 
151  typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
152  key_compare, _Pair_alloc_type> _Rep_type;
153  /// The actual tree structure.
154  _Rep_type _M_t;
155 
157 
158  public:
159  // many of these are specified differently in ISO, but the following are
160  // "functionally equivalent"
161  typedef typename _Alloc_traits::pointer pointer;
162  typedef typename _Alloc_traits::const_pointer const_pointer;
163  typedef typename _Alloc_traits::reference reference;
164  typedef typename _Alloc_traits::const_reference const_reference;
165  typedef typename _Rep_type::iterator iterator;
166  typedef typename _Rep_type::const_iterator const_iterator;
167  typedef typename _Rep_type::size_type size_type;
168  typedef typename _Rep_type::difference_type difference_type;
171 
172 #if __cplusplus > 201402L
173  using node_type = typename _Rep_type::node_type;
174 #endif
175 
176  // [23.3.2] construct/copy/destroy
177  // (get_allocator() is also listed in this section)
178 
179  /**
180  * @brief Default constructor creates no elements.
181  */
182 #if __cplusplus < 201103L
183  multimap() : _M_t() { }
184 #else
185  multimap() = default;
186 #endif
187 
188  /**
189  * @brief Creates a %multimap with no elements.
190  * @param __comp A comparison object.
191  * @param __a An allocator object.
192  */
193  explicit
194  multimap(const _Compare& __comp,
195  const allocator_type& __a = allocator_type())
196  : _M_t(__comp, _Pair_alloc_type(__a)) { }
197 
198  /**
199  * @brief %Multimap copy constructor.
200  *
201  * Whether the allocator is copied depends on the allocator traits.
202  */
203 #if __cplusplus < 201103L
204  multimap(const multimap& __x)
205  : _M_t(__x._M_t) { }
206 #else
207  multimap(const multimap&) = default;
208 
209  /**
210  * @brief %Multimap move constructor.
211  *
212  * The newly-created %multimap contains the exact contents of the
213  * moved instance. The moved instance is a valid, but unspecified
214  * %multimap.
215  */
216  multimap(multimap&&) = default;
217 
218  /**
219  * @brief Builds a %multimap from an initializer_list.
220  * @param __l An initializer_list.
221  * @param __comp A comparison functor.
222  * @param __a An allocator object.
223  *
224  * Create a %multimap consisting of copies of the elements from
225  * the initializer_list. This is linear in N if the list is already
226  * sorted, and NlogN otherwise (where N is @a __l.size()).
227  */
229  const _Compare& __comp = _Compare(),
230  const allocator_type& __a = allocator_type())
231  : _M_t(__comp, _Pair_alloc_type(__a))
232  { _M_t._M_insert_range_equal(__l.begin(), __l.end()); }
233 
234  /// Allocator-extended default constructor.
235  explicit
236  multimap(const allocator_type& __a)
237  : _M_t(_Pair_alloc_type(__a)) { }
238 
239  /// Allocator-extended copy constructor.
240  multimap(const multimap& __m,
241  const __type_identity_t<allocator_type>& __a)
242  : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
243 
244  /// Allocator-extended move constructor.
245  multimap(multimap&& __m, const __type_identity_t<allocator_type>& __a)
247  && _Alloc_traits::_S_always_equal())
248  : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
249 
250  /// Allocator-extended initialier-list constructor.
251  multimap(initializer_list<value_type> __l, const allocator_type& __a)
252  : _M_t(_Pair_alloc_type(__a))
253  { _M_t._M_insert_range_equal(__l.begin(), __l.end()); }
254 
255  /// Allocator-extended range constructor.
256  template<typename _InputIterator>
257  multimap(_InputIterator __first, _InputIterator __last,
258  const allocator_type& __a)
259  : _M_t(_Pair_alloc_type(__a))
260  { _M_t._M_insert_range_equal(__first, __last); }
261 #endif
262 
263  /**
264  * @brief Builds a %multimap from a range.
265  * @param __first An input iterator.
266  * @param __last An input iterator.
267  *
268  * Create a %multimap consisting of copies of the elements from
269  * [__first,__last). This is linear in N if the range is already sorted,
270  * and NlogN otherwise (where N is distance(__first,__last)).
271  */
272  template<typename _InputIterator>
273  multimap(_InputIterator __first, _InputIterator __last)
274  : _M_t()
275  { _M_t._M_insert_range_equal(__first, __last); }
276 
277  /**
278  * @brief Builds a %multimap from a range.
279  * @param __first An input iterator.
280  * @param __last An input iterator.
281  * @param __comp A comparison functor.
282  * @param __a An allocator object.
283  *
284  * Create a %multimap consisting of copies of the elements from
285  * [__first,__last). This is linear in N if the range is already sorted,
286  * and NlogN otherwise (where N is distance(__first,__last)).
287  */
288  template<typename _InputIterator>
289  multimap(_InputIterator __first, _InputIterator __last,
290  const _Compare& __comp,
291  const allocator_type& __a = allocator_type())
292  : _M_t(__comp, _Pair_alloc_type(__a))
293  { _M_t._M_insert_range_equal(__first, __last); }
294 
295 #if __cplusplus >= 201103L
296  /**
297  * The dtor only erases the elements, and note that if the elements
298  * themselves are pointers, the pointed-to memory is not touched in any
299  * way. Managing the pointer is the user's responsibility.
300  */
301  ~multimap() = default;
302 #endif
303 
304  /**
305  * @brief %Multimap assignment operator.
306  *
307  * Whether the allocator is copied depends on the allocator traits.
308  */
309 #if __cplusplus < 201103L
310  multimap&
311  operator=(const multimap& __x)
312  {
313  _M_t = __x._M_t;
314  return *this;
315  }
316 #else
317  multimap&
318  operator=(const multimap&) = default;
319 
320  /// Move assignment operator.
321  multimap&
322  operator=(multimap&&) = default;
323 
324  /**
325  * @brief %Multimap list assignment operator.
326  * @param __l An initializer_list.
327  *
328  * This function fills a %multimap with copies of the elements
329  * in the initializer list @a __l.
330  *
331  * Note that the assignment completely changes the %multimap and
332  * that the resulting %multimap's size is the same as the number
333  * of elements assigned.
334  */
335  multimap&
337  {
338  _M_t._M_assign_equal(__l.begin(), __l.end());
339  return *this;
340  }
341 #endif
342 
343  /// Get a copy of the memory allocation object.
344  allocator_type
345  get_allocator() const _GLIBCXX_NOEXCEPT
346  { return allocator_type(_M_t.get_allocator()); }
347 
348  // iterators
349  /**
350  * Returns a read/write iterator that points to the first pair in the
351  * %multimap. Iteration is done in ascending order according to the
352  * keys.
353  */
354  iterator
355  begin() _GLIBCXX_NOEXCEPT
356  { return _M_t.begin(); }
357 
358  /**
359  * Returns a read-only (constant) iterator that points to the first pair
360  * in the %multimap. Iteration is done in ascending order according to
361  * the keys.
362  */
363  const_iterator
364  begin() const _GLIBCXX_NOEXCEPT
365  { return _M_t.begin(); }
366 
367  /**
368  * Returns a read/write iterator that points one past the last pair in
369  * the %multimap. Iteration is done in ascending order according to the
370  * keys.
371  */
372  iterator
373  end() _GLIBCXX_NOEXCEPT
374  { return _M_t.end(); }
375 
376  /**
377  * Returns a read-only (constant) iterator that points one past the last
378  * pair in the %multimap. Iteration is done in ascending order according
379  * to the keys.
380  */
381  const_iterator
382  end() const _GLIBCXX_NOEXCEPT
383  { return _M_t.end(); }
384 
385  /**
386  * Returns a read/write reverse iterator that points to the last pair in
387  * the %multimap. Iteration is done in descending order according to the
388  * keys.
389  */
391  rbegin() _GLIBCXX_NOEXCEPT
392  { return _M_t.rbegin(); }
393 
394  /**
395  * Returns a read-only (constant) reverse iterator that points to the
396  * last pair in the %multimap. Iteration is done in descending order
397  * according to the keys.
398  */
399  const_reverse_iterator
400  rbegin() const _GLIBCXX_NOEXCEPT
401  { return _M_t.rbegin(); }
402 
403  /**
404  * Returns a read/write reverse iterator that points to one before the
405  * first pair in the %multimap. Iteration is done in descending order
406  * according to the keys.
407  */
409  rend() _GLIBCXX_NOEXCEPT
410  { return _M_t.rend(); }
411 
412  /**
413  * Returns a read-only (constant) reverse iterator that points to one
414  * before the first pair in the %multimap. Iteration is done in
415  * descending order according to the keys.
416  */
417  const_reverse_iterator
418  rend() const _GLIBCXX_NOEXCEPT
419  { return _M_t.rend(); }
420 
421 #if __cplusplus >= 201103L
422  /**
423  * Returns a read-only (constant) iterator that points to the first pair
424  * in the %multimap. Iteration is done in ascending order according to
425  * the keys.
426  */
427  const_iterator
428  cbegin() const noexcept
429  { return _M_t.begin(); }
430 
431  /**
432  * Returns a read-only (constant) iterator that points one past the last
433  * pair in the %multimap. Iteration is done in ascending order according
434  * to the keys.
435  */
436  const_iterator
437  cend() const noexcept
438  { return _M_t.end(); }
439 
440  /**
441  * Returns a read-only (constant) reverse iterator that points to the
442  * last pair in the %multimap. Iteration is done in descending order
443  * according to the keys.
444  */
445  const_reverse_iterator
446  crbegin() const noexcept
447  { return _M_t.rbegin(); }
448 
449  /**
450  * Returns a read-only (constant) reverse iterator that points to one
451  * before the first pair in the %multimap. Iteration is done in
452  * descending order according to the keys.
453  */
454  const_reverse_iterator
455  crend() const noexcept
456  { return _M_t.rend(); }
457 #endif
458 
459  // capacity
460  /** Returns true if the %multimap is empty. */
461  _GLIBCXX_NODISCARD bool
462  empty() const _GLIBCXX_NOEXCEPT
463  { return _M_t.empty(); }
464 
465  /** Returns the size of the %multimap. */
466  size_type
467  size() const _GLIBCXX_NOEXCEPT
468  { return _M_t.size(); }
469 
470  /** Returns the maximum size of the %multimap. */
471  size_type
472  max_size() const _GLIBCXX_NOEXCEPT
473  { return _M_t.max_size(); }
474 
475  // modifiers
476 #if __cplusplus >= 201103L
477  /**
478  * @brief Build and insert a std::pair into the %multimap.
479  *
480  * @param __args Arguments used to generate a new pair instance (see
481  * std::piecewise_contruct for passing arguments to each
482  * part of the pair constructor).
483  *
484  * @return An iterator that points to the inserted (key,value) pair.
485  *
486  * This function builds and inserts a (key, value) %pair into the
487  * %multimap.
488  * Contrary to a std::map the %multimap does not rely on unique keys and
489  * thus multiple pairs with the same key can be inserted.
490  *
491  * Insertion requires logarithmic time.
492  */
493  template<typename... _Args>
494  iterator
495  emplace(_Args&&... __args)
496  { return _M_t._M_emplace_equal(std::forward<_Args>(__args)...); }
497 
498  /**
499  * @brief Builds and inserts a std::pair into the %multimap.
500  *
501  * @param __pos An iterator that serves as a hint as to where the pair
502  * should be inserted.
503  * @param __args Arguments used to generate a new pair instance (see
504  * std::piecewise_contruct for passing arguments to each
505  * part of the pair constructor).
506  * @return An iterator that points to the inserted (key,value) pair.
507  *
508  * This function inserts a (key, value) pair into the %multimap.
509  * Contrary to a std::map the %multimap does not rely on unique keys and
510  * thus multiple pairs with the same key can be inserted.
511  * Note that the first parameter is only a hint and can potentially
512  * improve the performance of the insertion process. A bad hint would
513  * cause no gains in efficiency.
514  *
515  * For more on @a hinting, see:
516  * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
517  *
518  * Insertion requires logarithmic time (if the hint is not taken).
519  */
520  template<typename... _Args>
521  iterator
522  emplace_hint(const_iterator __pos, _Args&&... __args)
523  {
524  return _M_t._M_emplace_hint_equal(__pos,
525  std::forward<_Args>(__args)...);
526  }
527 #endif
528 
529  /**
530  * @brief Inserts a std::pair into the %multimap.
531  * @param __x Pair to be inserted (see std::make_pair for easy creation
532  * of pairs).
533  * @return An iterator that points to the inserted (key,value) pair.
534  *
535  * This function inserts a (key, value) pair into the %multimap.
536  * Contrary to a std::map the %multimap does not rely on unique keys and
537  * thus multiple pairs with the same key can be inserted.
538  *
539  * Insertion requires logarithmic time.
540  * @{
541  */
542  iterator
543  insert(const value_type& __x)
544  { return _M_t._M_insert_equal(__x); }
545 
546 #if __cplusplus >= 201103L
547  // _GLIBCXX_RESOLVE_LIB_DEFECTS
548  // 2354. Unnecessary copying when inserting into maps with braced-init
549  iterator
551  { return _M_t._M_insert_equal(std::move(__x)); }
552 
553  template<typename _Pair>
554  __enable_if_t<is_constructible<value_type, _Pair>::value, iterator>
555  insert(_Pair&& __x)
556  { return _M_t._M_emplace_equal(std::forward<_Pair>(__x)); }
557 #endif
558  /// @}
559 
560  /**
561  * @brief Inserts a std::pair into the %multimap.
562  * @param __position An iterator that serves as a hint as to where the
563  * pair should be inserted.
564  * @param __x Pair to be inserted (see std::make_pair for easy creation
565  * of pairs).
566  * @return An iterator that points to the inserted (key,value) pair.
567  *
568  * This function inserts a (key, value) pair into the %multimap.
569  * Contrary to a std::map the %multimap does not rely on unique keys and
570  * thus multiple pairs with the same key can be inserted.
571  * Note that the first parameter is only a hint and can potentially
572  * improve the performance of the insertion process. A bad hint would
573  * cause no gains in efficiency.
574  *
575  * For more on @a hinting, see:
576  * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
577  *
578  * Insertion requires logarithmic time (if the hint is not taken).
579  * @{
580  */
581  iterator
582 #if __cplusplus >= 201103L
583  insert(const_iterator __position, const value_type& __x)
584 #else
585  insert(iterator __position, const value_type& __x)
586 #endif
587  { return _M_t._M_insert_equal_(__position, __x); }
588 
589 #if __cplusplus >= 201103L
590  // _GLIBCXX_RESOLVE_LIB_DEFECTS
591  // 2354. Unnecessary copying when inserting into maps with braced-init
592  iterator
593  insert(const_iterator __position, value_type&& __x)
594  { return _M_t._M_insert_equal_(__position, std::move(__x)); }
595 
596  template<typename _Pair>
597  __enable_if_t<is_constructible<value_type, _Pair&&>::value, iterator>
598  insert(const_iterator __position, _Pair&& __x)
599  {
600  return _M_t._M_emplace_hint_equal(__position,
601  std::forward<_Pair>(__x));
602  }
603 #endif
604  /// @}
605 
606  /**
607  * @brief A template function that attempts to insert a range
608  * of elements.
609  * @param __first Iterator pointing to the start of the range to be
610  * inserted.
611  * @param __last Iterator pointing to the end of the range.
612  *
613  * Complexity similar to that of the range constructor.
614  */
615  template<typename _InputIterator>
616  void
617  insert(_InputIterator __first, _InputIterator __last)
618  { _M_t._M_insert_range_equal(__first, __last); }
619 
620 #if __cplusplus >= 201103L
621  /**
622  * @brief Attempts to insert a list of std::pairs into the %multimap.
623  * @param __l A std::initializer_list<value_type> of pairs to be
624  * inserted.
625  *
626  * Complexity similar to that of the range constructor.
627  */
628  void
630  { this->insert(__l.begin(), __l.end()); }
631 #endif
632 
633 #if __cplusplus > 201402L
634  /// Extract a node.
635  node_type
636  extract(const_iterator __pos)
637  {
638  __glibcxx_assert(__pos != end());
639  return _M_t.extract(__pos);
640  }
641 
642  /// Extract a node.
643  node_type
644  extract(const key_type& __x)
645  { return _M_t.extract(__x); }
646 
647  /// Re-insert an extracted node.
648  iterator
649  insert(node_type&& __nh)
650  { return _M_t._M_reinsert_node_equal(std::move(__nh)); }
651 
652  /// Re-insert an extracted node.
653  iterator
654  insert(const_iterator __hint, node_type&& __nh)
655  { return _M_t._M_reinsert_node_hint_equal(__hint, std::move(__nh)); }
656 
657  template<typename, typename>
658  friend struct std::_Rb_tree_merge_helper;
659 
660  template<typename _Cmp2>
661  void
662  merge(multimap<_Key, _Tp, _Cmp2, _Alloc>& __source)
663  {
664  using _Merge_helper = _Rb_tree_merge_helper<multimap, _Cmp2>;
665  _M_t._M_merge_equal(_Merge_helper::_S_get_tree(__source));
666  }
667 
668  template<typename _Cmp2>
669  void
670  merge(multimap<_Key, _Tp, _Cmp2, _Alloc>&& __source)
671  { merge(__source); }
672 
673  template<typename _Cmp2>
674  void
675  merge(map<_Key, _Tp, _Cmp2, _Alloc>& __source)
676  {
677  using _Merge_helper = _Rb_tree_merge_helper<multimap, _Cmp2>;
678  _M_t._M_merge_equal(_Merge_helper::_S_get_tree(__source));
679  }
680 
681  template<typename _Cmp2>
682  void
683  merge(map<_Key, _Tp, _Cmp2, _Alloc>&& __source)
684  { merge(__source); }
685 #endif // C++17
686 
687 #if __cplusplus >= 201103L
688  // _GLIBCXX_RESOLVE_LIB_DEFECTS
689  // DR 130. Associative erase should return an iterator.
690  /**
691  * @brief Erases an element from a %multimap.
692  * @param __position An iterator pointing to the element to be erased.
693  * @return An iterator pointing to the element immediately following
694  * @a position prior to the element being erased. If no such
695  * element exists, end() is returned.
696  *
697  * This function erases an element, pointed to by the given iterator,
698  * from a %multimap. Note that this function only erases the element,
699  * and that if the element is itself a pointer, the pointed-to memory is
700  * not touched in any way. Managing the pointer is the user's
701  * responsibility.
702  *
703  * @{
704  */
705  iterator
706  erase(const_iterator __position)
707  { return _M_t.erase(__position); }
708 
709  // LWG 2059.
710  _GLIBCXX_ABI_TAG_CXX11
711  iterator
712  erase(iterator __position)
713  { return _M_t.erase(__position); }
714  /// @}
715 #else
716  /**
717  * @brief Erases an element from a %multimap.
718  * @param __position An iterator pointing to the element to be erased.
719  *
720  * This function erases an element, pointed to by the given iterator,
721  * from a %multimap. Note that this function only erases the element,
722  * and that if the element is itself a pointer, the pointed-to memory is
723  * not touched in any way. Managing the pointer is the user's
724  * responsibility.
725  */
726  void
727  erase(iterator __position)
728  { _M_t.erase(__position); }
729 #endif
730 
731  /**
732  * @brief Erases elements according to the provided key.
733  * @param __x Key of element to be erased.
734  * @return The number of elements erased.
735  *
736  * This function erases all elements located by the given key from a
737  * %multimap.
738  * Note that this function only erases the element, and that if
739  * the element is itself a pointer, the pointed-to memory is not touched
740  * in any way. Managing the pointer is the user's responsibility.
741  */
742  size_type
743  erase(const key_type& __x)
744  { return _M_t.erase(__x); }
745 
746 #if __cplusplus >= 201103L
747  // _GLIBCXX_RESOLVE_LIB_DEFECTS
748  // DR 130. Associative erase should return an iterator.
749  /**
750  * @brief Erases a [first,last) range of elements from a %multimap.
751  * @param __first Iterator pointing to the start of the range to be
752  * erased.
753  * @param __last Iterator pointing to the end of the range to be
754  * erased .
755  * @return The iterator @a __last.
756  *
757  * This function erases a sequence of elements from a %multimap.
758  * Note that this function only erases the elements, and that if
759  * the elements themselves are pointers, the pointed-to memory is not
760  * touched in any way. Managing the pointer is the user's
761  * responsibility.
762  */
763  iterator
764  erase(const_iterator __first, const_iterator __last)
765  { return _M_t.erase(__first, __last); }
766 #else
767  // _GLIBCXX_RESOLVE_LIB_DEFECTS
768  // DR 130. Associative erase should return an iterator.
769  /**
770  * @brief Erases a [first,last) range of elements from a %multimap.
771  * @param __first Iterator pointing to the start of the range to be
772  * erased.
773  * @param __last Iterator pointing to the end of the range to
774  * be erased.
775  *
776  * This function erases a sequence of elements from a %multimap.
777  * Note that this function only erases the elements, and that if
778  * the elements themselves are pointers, the pointed-to memory is not
779  * touched in any way. Managing the pointer is the user's
780  * responsibility.
781  */
782  void
783  erase(iterator __first, iterator __last)
784  { _M_t.erase(__first, __last); }
785 #endif
786 
787  /**
788  * @brief Swaps data with another %multimap.
789  * @param __x A %multimap of the same element and allocator types.
790  *
791  * This exchanges the elements between two multimaps in constant time.
792  * (It is only swapping a pointer, an integer, and an instance of
793  * the @c Compare type (which itself is often stateless and empty), so it
794  * should be quite fast.)
795  * Note that the global std::swap() function is specialized such that
796  * std::swap(m1,m2) will feed to this function.
797  *
798  * Whether the allocators are swapped depends on the allocator traits.
799  */
800  void
802  _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value)
803  { _M_t.swap(__x._M_t); }
804 
805  /**
806  * Erases all elements in a %multimap. Note that this function only
807  * erases the elements, and that if the elements themselves are pointers,
808  * the pointed-to memory is not touched in any way. Managing the pointer
809  * is the user's responsibility.
810  */
811  void
812  clear() _GLIBCXX_NOEXCEPT
813  { _M_t.clear(); }
814 
815  // observers
816  /**
817  * Returns the key comparison object out of which the %multimap
818  * was constructed.
819  */
820  key_compare
821  key_comp() const
822  { return _M_t.key_comp(); }
823 
824  /**
825  * Returns a value comparison object, built from the key comparison
826  * object out of which the %multimap was constructed.
827  */
828  value_compare
829  value_comp() const
830  { return value_compare(_M_t.key_comp()); }
831 
832  // multimap operations
833 
834  ///@{
835  /**
836  * @brief Tries to locate an element in a %multimap.
837  * @param __x Key of (key, value) pair to be located.
838  * @return Iterator pointing to sought-after element,
839  * or end() if not found.
840  *
841  * This function takes a key and tries to locate the element with which
842  * the key matches. If successful the function returns an iterator
843  * pointing to the sought after %pair. If unsuccessful it returns the
844  * past-the-end ( @c end() ) iterator.
845  */
846  iterator
847  find(const key_type& __x)
848  { return _M_t.find(__x); }
849 
850 #if __cplusplus > 201103L
851  template<typename _Kt>
852  auto
853  find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x))
854  { return _M_t._M_find_tr(__x); }
855 #endif
856  ///@}
857 
858  ///@{
859  /**
860  * @brief Tries to locate an element in a %multimap.
861  * @param __x Key of (key, value) pair to be located.
862  * @return Read-only (constant) iterator pointing to sought-after
863  * element, or end() if not found.
864  *
865  * This function takes a key and tries to locate the element with which
866  * the key matches. If successful the function returns a constant
867  * iterator pointing to the sought after %pair. If unsuccessful it
868  * returns the past-the-end ( @c end() ) iterator.
869  */
870  const_iterator
871  find(const key_type& __x) const
872  { return _M_t.find(__x); }
873 
874 #if __cplusplus > 201103L
875  template<typename _Kt>
876  auto
877  find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x))
878  { return _M_t._M_find_tr(__x); }
879 #endif
880  ///@}
881 
882  ///@{
883  /**
884  * @brief Finds the number of elements with given key.
885  * @param __x Key of (key, value) pairs to be located.
886  * @return Number of elements with specified key.
887  */
888  size_type
889  count(const key_type& __x) const
890  { return _M_t.count(__x); }
891 
892 #if __cplusplus > 201103L
893  template<typename _Kt>
894  auto
895  count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
896  { return _M_t._M_count_tr(__x); }
897 #endif
898  ///@}
899 
900 #if __cplusplus > 201703L
901  ///@{
902  /**
903  * @brief Finds whether an element with the given key exists.
904  * @param __x Key of (key, value) pairs to be located.
905  * @return True if there is any element with the specified key.
906  */
907  bool
908  contains(const key_type& __x) const
909  { return _M_t.find(__x) != _M_t.end(); }
910 
911  template<typename _Kt>
912  auto
913  contains(const _Kt& __x) const
914  -> decltype(_M_t._M_find_tr(__x), void(), true)
915  { return _M_t._M_find_tr(__x) != _M_t.end(); }
916  ///@}
917 #endif
918 
919  ///@{
920  /**
921  * @brief Finds the beginning of a subsequence matching given key.
922  * @param __x Key of (key, value) pair to be located.
923  * @return Iterator pointing to first element equal to or greater
924  * than key, or end().
925  *
926  * This function returns the first element of a subsequence of elements
927  * that matches the given key. If unsuccessful it returns an iterator
928  * pointing to the first element that has a greater value than given key
929  * or end() if no such element exists.
930  */
931  iterator
932  lower_bound(const key_type& __x)
933  { return _M_t.lower_bound(__x); }
934 
935 #if __cplusplus > 201103L
936  template<typename _Kt>
937  auto
938  lower_bound(const _Kt& __x)
939  -> decltype(iterator(_M_t._M_lower_bound_tr(__x)))
940  { return iterator(_M_t._M_lower_bound_tr(__x)); }
941 #endif
942  ///@}
943 
944  ///@{
945  /**
946  * @brief Finds the beginning of a subsequence matching given key.
947  * @param __x Key of (key, value) pair to be located.
948  * @return Read-only (constant) iterator pointing to first element
949  * equal to or greater than key, or end().
950  *
951  * This function returns the first element of a subsequence of
952  * elements that matches the given key. If unsuccessful the
953  * iterator will point to the next greatest element or, if no
954  * such greater element exists, to end().
955  */
956  const_iterator
957  lower_bound(const key_type& __x) const
958  { return _M_t.lower_bound(__x); }
959 
960 #if __cplusplus > 201103L
961  template<typename _Kt>
962  auto
963  lower_bound(const _Kt& __x) const
964  -> decltype(const_iterator(_M_t._M_lower_bound_tr(__x)))
965  { return const_iterator(_M_t._M_lower_bound_tr(__x)); }
966 #endif
967  ///@}
968 
969  ///@{
970  /**
971  * @brief Finds the end of a subsequence matching given key.
972  * @param __x Key of (key, value) pair to be located.
973  * @return Iterator pointing to the first element
974  * greater than key, or end().
975  */
976  iterator
977  upper_bound(const key_type& __x)
978  { return _M_t.upper_bound(__x); }
979 
980 #if __cplusplus > 201103L
981  template<typename _Kt>
982  auto
983  upper_bound(const _Kt& __x)
984  -> decltype(iterator(_M_t._M_upper_bound_tr(__x)))
985  { return iterator(_M_t._M_upper_bound_tr(__x)); }
986 #endif
987  ///@}
988 
989  ///@{
990  /**
991  * @brief Finds the end of a subsequence matching given key.
992  * @param __x Key of (key, value) pair to be located.
993  * @return Read-only (constant) iterator pointing to first iterator
994  * greater than key, or end().
995  */
996  const_iterator
997  upper_bound(const key_type& __x) const
998  { return _M_t.upper_bound(__x); }
999 
1000 #if __cplusplus > 201103L
1001  template<typename _Kt>
1002  auto
1003  upper_bound(const _Kt& __x) const
1004  -> decltype(const_iterator(_M_t._M_upper_bound_tr(__x)))
1005  { return const_iterator(_M_t._M_upper_bound_tr(__x)); }
1006 #endif
1007  ///@}
1008 
1009  ///@{
1010  /**
1011  * @brief Finds a subsequence matching given key.
1012  * @param __x Key of (key, value) pairs to be located.
1013  * @return Pair of iterators that possibly points to the subsequence
1014  * matching given key.
1015  *
1016  * This function is equivalent to
1017  * @code
1018  * std::make_pair(c.lower_bound(val),
1019  * c.upper_bound(val))
1020  * @endcode
1021  * (but is faster than making the calls separately).
1022  */
1024  equal_range(const key_type& __x)
1025  { return _M_t.equal_range(__x); }
1026 
1027 #if __cplusplus > 201103L
1028  template<typename _Kt>
1029  auto
1030  equal_range(const _Kt& __x)
1031  -> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)))
1032  { return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); }
1033 #endif
1034  ///@}
1035 
1036  ///@{
1037  /**
1038  * @brief Finds a subsequence matching given key.
1039  * @param __x Key of (key, value) pairs to be located.
1040  * @return Pair of read-only (constant) iterators that possibly points
1041  * to the subsequence matching given key.
1042  *
1043  * This function is equivalent to
1044  * @code
1045  * std::make_pair(c.lower_bound(val),
1046  * c.upper_bound(val))
1047  * @endcode
1048  * (but is faster than making the calls separately).
1049  */
1051  equal_range(const key_type& __x) const
1052  { return _M_t.equal_range(__x); }
1053 
1054 #if __cplusplus > 201103L
1055  template<typename _Kt>
1056  auto
1057  equal_range(const _Kt& __x) const
1059  _M_t._M_equal_range_tr(__x)))
1060  {
1062  _M_t._M_equal_range_tr(__x));
1063  }
1064 #endif
1065  ///@}
1066 
1067  template<typename _K1, typename _T1, typename _C1, typename _A1>
1068  friend bool
1069  operator==(const multimap<_K1, _T1, _C1, _A1>&,
1071 
1072 #if __cpp_lib_three_way_comparison
1073  template<typename _K1, typename _T1, typename _C1, typename _A1>
1074  friend __detail::__synth3way_t<pair<const _K1, _T1>>
1075  operator<=>(const multimap<_K1, _T1, _C1, _A1>&,
1077 #else
1078  template<typename _K1, typename _T1, typename _C1, typename _A1>
1079  friend bool
1080  operator<(const multimap<_K1, _T1, _C1, _A1>&,
1082 #endif
1083  };
1084 
1085 #if __cpp_deduction_guides >= 201606
1086 
1087  template<typename _InputIterator,
1088  typename _Compare = less<__iter_key_t<_InputIterator>>,
1089  typename _Allocator = allocator<__iter_to_alloc_t<_InputIterator>>,
1090  typename = _RequireInputIter<_InputIterator>,
1091  typename = _RequireNotAllocator<_Compare>,
1092  typename = _RequireAllocator<_Allocator>>
1093  multimap(_InputIterator, _InputIterator,
1094  _Compare = _Compare(), _Allocator = _Allocator())
1095  -> multimap<__iter_key_t<_InputIterator>, __iter_val_t<_InputIterator>,
1096  _Compare, _Allocator>;
1097 
1098  template<typename _Key, typename _Tp, typename _Compare = less<_Key>,
1099  typename _Allocator = allocator<pair<const _Key, _Tp>>,
1100  typename = _RequireNotAllocator<_Compare>,
1101  typename = _RequireAllocator<_Allocator>>
1102  multimap(initializer_list<pair<_Key, _Tp>>,
1103  _Compare = _Compare(), _Allocator = _Allocator())
1104  -> multimap<_Key, _Tp, _Compare, _Allocator>;
1105 
1106  template<typename _InputIterator, typename _Allocator,
1107  typename = _RequireInputIter<_InputIterator>,
1108  typename = _RequireAllocator<_Allocator>>
1109  multimap(_InputIterator, _InputIterator, _Allocator)
1110  -> multimap<__iter_key_t<_InputIterator>, __iter_val_t<_InputIterator>,
1111  less<__iter_key_t<_InputIterator>>, _Allocator>;
1112 
1113  template<typename _Key, typename _Tp, typename _Allocator,
1114  typename = _RequireAllocator<_Allocator>>
1115  multimap(initializer_list<pair<_Key, _Tp>>, _Allocator)
1116  -> multimap<_Key, _Tp, less<_Key>, _Allocator>;
1117 
1118 #endif // deduction guides
1119 
1120  /**
1121  * @brief Multimap equality comparison.
1122  * @param __x A %multimap.
1123  * @param __y A %multimap of the same type as @a __x.
1124  * @return True iff the size and elements of the maps are equal.
1125  *
1126  * This is an equivalence relation. It is linear in the size of the
1127  * multimaps. Multimaps are considered equivalent if their sizes are equal,
1128  * and if corresponding elements compare equal.
1129  */
1130  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1131  inline bool
1134  { return __x._M_t == __y._M_t; }
1135 
1136 #if __cpp_lib_three_way_comparison
1137  /**
1138  * @brief Multimap ordering relation.
1139  * @param __x A `multimap`.
1140  * @param __y A `multimap` of the same type as `x`.
1141  * @return A value indicating whether `__x` is less than, equal to,
1142  * greater than, or incomparable with `__y`.
1143  *
1144  * This is a total ordering relation. It is linear in the size of the
1145  * maps. The elements must be comparable with @c <.
1146  *
1147  * See `std::lexicographical_compare_three_way()` for how the determination
1148  * is made. This operator is used to synthesize relational operators like
1149  * `<` and `>=` etc.
1150  */
1151  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1152  inline __detail::__synth3way_t<pair<const _Key, _Tp>>
1153  operator<=>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1154  const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1155  { return __x._M_t <=> __y._M_t; }
1156 #else
1157  /**
1158  * @brief Multimap ordering relation.
1159  * @param __x A %multimap.
1160  * @param __y A %multimap of the same type as @a __x.
1161  * @return True iff @a x is lexicographically less than @a y.
1162  *
1163  * This is a total ordering relation. It is linear in the size of the
1164  * multimaps. The elements must be comparable with @c <.
1165  *
1166  * See std::lexicographical_compare() for how the determination is made.
1167  */
1168  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1169  inline bool
1170  operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1172  { return __x._M_t < __y._M_t; }
1173 
1174  /// Based on operator==
1175  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1176  inline bool
1179  { return !(__x == __y); }
1180 
1181  /// Based on operator<
1182  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1183  inline bool
1186  { return __y < __x; }
1187 
1188  /// Based on operator<
1189  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1190  inline bool
1191  operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1193  { return !(__y < __x); }
1194 
1195  /// Based on operator<
1196  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1197  inline bool
1200  { return !(__x < __y); }
1201 #endif // three-way comparison
1202 
1203  /// See std::multimap::swap().
1204  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1205  inline void
1208  _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
1209  { __x.swap(__y); }
1210 
1211 _GLIBCXX_END_NAMESPACE_CONTAINER
1212 
1213 #if __cplusplus > 201402L
1214  // Allow std::multimap access to internals of compatible maps.
1215  template<typename _Key, typename _Val, typename _Cmp1, typename _Alloc,
1216  typename _Cmp2>
1217  struct
1218  _Rb_tree_merge_helper<_GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp1, _Alloc>,
1219  _Cmp2>
1220  {
1221  private:
1222  friend class _GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp1, _Alloc>;
1223 
1224  static auto&
1225  _S_get_tree(_GLIBCXX_STD_C::map<_Key, _Val, _Cmp2, _Alloc>& __map)
1226  { return __map._M_t; }
1227 
1228  static auto&
1229  _S_get_tree(_GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp2, _Alloc>& __map)
1230  { return __map._M_t; }
1231  };
1232 #endif // C++17
1233 
1234 _GLIBCXX_END_NAMESPACE_VERSION
1235 } // namespace std
1236 
1237 #endif /* _STL_MULTIMAP_H */
constexpr std::remove_reference< _Tp >::type && move(_Tp &&__t) noexcept
Convert a value to an rvalue.
Definition: move.h:104
void swap(any &__x, any &__y) noexcept
Exchange the states of two any objects.
Definition: any:429
ISO C++ entities toplevel namespace is std.
initializer_list
is_same
Definition: type_traits:1435
is_nothrow_copy_constructible
Definition: type_traits:1081
The standard allocator, as per C++03 [20.4.1].
Definition: allocator.h:125
Node handle type for maps.
Definition: node_handle.h:240
One of the comparison functors.
Definition: stl_function.h:404
Struct holding two objects of arbitrary type.
Definition: stl_pair.h:187
_T1 first
The first member.
Definition: stl_pair.h:191
constexpr void swap(pair &__p) noexcept(__and_< __is_nothrow_swappable< _T1 >, __is_nothrow_swappable< _T2 >>::value)
Swap the first members and then the second members.
Definition: stl_pair.h:204
Common iterator class.
A standard container made up of (key,value) pairs, which can be retrieved based on a key,...
Definition: stl_multimap.h:100
auto lower_bound(const _Kt &__x) -> decltype(iterator(_M_t._M_lower_bound_tr(__x)))
Finds the beginning of a subsequence matching given key.
Definition: stl_multimap.h:938
void insert(initializer_list< value_type > __l)
Attempts to insert a list of std::pairs into the multimap.
Definition: stl_multimap.h:629
multimap & operator=(initializer_list< value_type > __l)
Multimap list assignment operator.
Definition: stl_multimap.h:336
iterator insert(node_type &&__nh)
Re-insert an extracted node.
Definition: stl_multimap.h:649
multimap(const allocator_type &__a)
Allocator-extended default constructor.
Definition: stl_multimap.h:236
iterator insert(const_iterator __hint, node_type &&__nh)
Re-insert an extracted node.
Definition: stl_multimap.h:654
__enable_if_t< is_constructible< value_type, _Pair >::value, iterator > insert(_Pair &&__x)
Inserts a std::pair into the multimap.
Definition: stl_multimap.h:555
size_type erase(const key_type &__x)
Erases elements according to the provided key.
Definition: stl_multimap.h:743
iterator emplace(_Args &&... __args)
Build and insert a std::pair into the multimap.
Definition: stl_multimap.h:495
multimap(const _Compare &__comp, const allocator_type &__a=allocator_type())
Creates a multimap with no elements.
Definition: stl_multimap.h:194
iterator insert(const_iterator __position, value_type &&__x)
Inserts a std::pair into the multimap.
Definition: stl_multimap.h:593
bool empty() const noexcept
Definition: stl_multimap.h:462
const_iterator find(const key_type &__x) const
Tries to locate an element in a multimap.
Definition: stl_multimap.h:871
auto equal_range(const _Kt &__x) const -> decltype(pair< const_iterator, const_iterator >(_M_t._M_equal_range_tr(__x)))
Finds a subsequence matching given key.
auto lower_bound(const _Kt &__x) const -> decltype(const_iterator(_M_t._M_lower_bound_tr(__x)))
Finds the beginning of a subsequence matching given key.
Definition: stl_multimap.h:963
iterator begin() noexcept
Definition: stl_multimap.h:355
void clear() noexcept
Definition: stl_multimap.h:812
void insert(_InputIterator __first, _InputIterator __last)
A template function that attempts to insert a range of elements.
Definition: stl_multimap.h:617
iterator find(const key_type &__x)
Tries to locate an element in a multimap.
Definition: stl_multimap.h:847
const_iterator end() const noexcept
Definition: stl_multimap.h:382
iterator erase(const_iterator __position)
Erases an element from a multimap.
Definition: stl_multimap.h:706
const_reverse_iterator rend() const noexcept
Definition: stl_multimap.h:418
~multimap()=default
multimap(_InputIterator __first, _InputIterator __last, const allocator_type &__a)
Allocator-extended range constructor.
Definition: stl_multimap.h:257
const_reverse_iterator crend() const noexcept
Definition: stl_multimap.h:455
auto upper_bound(const _Kt &__x) -> decltype(iterator(_M_t._M_upper_bound_tr(__x)))
Finds the end of a subsequence matching given key.
Definition: stl_multimap.h:983
iterator erase(const_iterator __first, const_iterator __last)
Erases a [first,last) range of elements from a multimap.
Definition: stl_multimap.h:764
multimap(initializer_list< value_type > __l, const _Compare &__comp=_Compare(), const allocator_type &__a=allocator_type())
Builds a multimap from an initializer_list.
Definition: stl_multimap.h:228
void swap(multimap &__x) noexcept(/*conditional */)
Swaps data with another multimap.
Definition: stl_multimap.h:801
auto count(const _Kt &__x) const -> decltype(_M_t._M_count_tr(__x))
Finds the number of elements with given key.
Definition: stl_multimap.h:895
std::pair< const_iterator, const_iterator > equal_range(const key_type &__x) const
Finds a subsequence matching given key.
size_type max_size() const noexcept
Definition: stl_multimap.h:472
const_reverse_iterator rbegin() const noexcept
Definition: stl_multimap.h:400
auto find(const _Kt &__x) const -> decltype(_M_t._M_find_tr(__x))
Tries to locate an element in a multimap.
Definition: stl_multimap.h:877
multimap(multimap &&__m, const __type_identity_t< allocator_type > &__a) noexcept(is_nothrow_copy_constructible< _Compare >::value &&_Alloc_traits::_S_always_equal())
Allocator-extended move constructor.
Definition: stl_multimap.h:245
const_iterator cbegin() const noexcept
Definition: stl_multimap.h:428
multimap(const multimap &)=default
Multimap copy constructor.
key_compare key_comp() const
Definition: stl_multimap.h:821
iterator insert(value_type &&__x)
Inserts a std::pair into the multimap.
Definition: stl_multimap.h:550
std::pair< iterator, iterator > equal_range(const key_type &__x)
Finds a subsequence matching given key.
auto find(const _Kt &__x) -> decltype(_M_t._M_find_tr(__x))
Tries to locate an element in a multimap.
Definition: stl_multimap.h:853
reverse_iterator rend() noexcept
Definition: stl_multimap.h:409
iterator emplace_hint(const_iterator __pos, _Args &&... __args)
Builds and inserts a std::pair into the multimap.
Definition: stl_multimap.h:522
bool contains(const key_type &__x) const
Finds whether an element with the given key exists.
Definition: stl_multimap.h:908
size_type size() const noexcept
Definition: stl_multimap.h:467
allocator_type get_allocator() const noexcept
Get a copy of the memory allocation object.
Definition: stl_multimap.h:345
_GLIBCXX_ABI_TAG_CXX11 iterator erase(iterator __position)
Erases an element from a multimap.
Definition: stl_multimap.h:712
const_reverse_iterator crbegin() const noexcept
Definition: stl_multimap.h:446
auto contains(const _Kt &__x) const -> decltype(_M_t._M_find_tr(__x), void(), true)
Finds whether an element with the given key exists.
Definition: stl_multimap.h:913
multimap(const multimap &__m, const __type_identity_t< allocator_type > &__a)
Allocator-extended copy constructor.
Definition: stl_multimap.h:240
multimap(initializer_list< value_type > __l, const allocator_type &__a)
Allocator-extended initialier-list constructor.
Definition: stl_multimap.h:251
const_iterator cend() const noexcept
Definition: stl_multimap.h:437
multimap(_InputIterator __first, _InputIterator __last)
Builds a multimap from a range.
Definition: stl_multimap.h:273
iterator upper_bound(const key_type &__x)
Finds the end of a subsequence matching given key.
Definition: stl_multimap.h:977
reverse_iterator rbegin() noexcept
Definition: stl_multimap.h:391
iterator insert(const value_type &__x)
Inserts a std::pair into the multimap.
Definition: stl_multimap.h:543
node_type extract(const key_type &__x)
Extract a node.
Definition: stl_multimap.h:644
__enable_if_t< is_constructible< value_type, _Pair && >::value, iterator > insert(const_iterator __position, _Pair &&__x)
Inserts a std::pair into the multimap.
Definition: stl_multimap.h:598
auto upper_bound(const _Kt &__x) const -> decltype(const_iterator(_M_t._M_upper_bound_tr(__x)))
Finds the end of a subsequence matching given key.
const_iterator begin() const noexcept
Definition: stl_multimap.h:364
auto equal_range(const _Kt &__x) -> decltype(pair< iterator, iterator >(_M_t._M_equal_range_tr(__x)))
Finds a subsequence matching given key.
multimap(multimap &&)=default
Multimap move constructor.
multimap & operator=(const multimap &)=default
Multimap assignment operator.
multimap()=default
Default constructor creates no elements.
multimap(_InputIterator __first, _InputIterator __last, const _Compare &__comp, const allocator_type &__a=allocator_type())
Builds a multimap from a range.
Definition: stl_multimap.h:289
const_iterator lower_bound(const key_type &__x) const
Finds the beginning of a subsequence matching given key.
Definition: stl_multimap.h:957
node_type extract(const_iterator __pos)
Extract a node.
Definition: stl_multimap.h:636
value_compare value_comp() const
Definition: stl_multimap.h:829
iterator lower_bound(const key_type &__x)
Finds the beginning of a subsequence matching given key.
Definition: stl_multimap.h:932
iterator end() noexcept
Definition: stl_multimap.h:373
iterator insert(const_iterator __position, const value_type &__x)
Inserts a std::pair into the multimap.
Definition: stl_multimap.h:583
const_iterator upper_bound(const key_type &__x) const
Finds the end of a subsequence matching given key.
Definition: stl_multimap.h:997
size_type count(const key_type &__x) const
Finds the number of elements with given key.
Definition: stl_multimap.h:889
multimap & operator=(multimap &&)=default
Move assignment operator.
Uniform interface to C++98 and C++11 allocators.