libstdc++
bitmap_allocator.h
Go to the documentation of this file.
1 // Bitmap Allocator. -*- C++ -*-
2 
3 // Copyright (C) 2004-2022 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file ext/bitmap_allocator.h
26  * This file is a GNU extension to the Standard C++ Library.
27  */
28 
29 #ifndef _BITMAP_ALLOCATOR_H
30 #define _BITMAP_ALLOCATOR_H 1
31 
32 #include <utility> // For std::pair.
33 #include <bits/functexcept.h> // For __throw_bad_alloc().
34 #include <bits/stl_function.h> // For greater_equal, and less_equal.
35 #include <new> // For operator new.
36 #include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
37 #include <ext/concurrence.h>
38 #include <bits/move.h>
39 
40 /** @brief The constant in the expression below is the alignment
41  * required in bytes.
42  */
43 #define _BALLOC_ALIGN_BYTES 8
44 
45 namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
46 {
47 _GLIBCXX_BEGIN_NAMESPACE_VERSION
48 
49  namespace __detail
50  {
51  /** @class __mini_vector bitmap_allocator.h bitmap_allocator.h
52  *
53  * @brief __mini_vector<> is a stripped down version of the
54  * full-fledged std::vector<>.
55  *
56  * It is to be used only for built-in types or PODs. Notable
57  * differences are:
58  *
59  * 1. Not all accessor functions are present.
60  * 2. Used ONLY for PODs.
61  * 3. No Allocator template argument. Uses ::operator new() to get
62  * memory, and ::operator delete() to free it.
63  * Caveat: The dtor does NOT free the memory allocated, so this a
64  * memory-leaking vector!
65  */
66  template<typename _Tp>
68  {
70  __mini_vector& operator=(const __mini_vector&);
71 
72  public:
73  typedef _Tp value_type;
74  typedef _Tp* pointer;
75  typedef _Tp& reference;
76  typedef const _Tp& const_reference;
77  typedef std::size_t size_type;
78  typedef std::ptrdiff_t difference_type;
79  typedef pointer iterator;
80 
81  private:
82  pointer _M_start;
83  pointer _M_finish;
84  pointer _M_end_of_storage;
85 
86  size_type
87  _M_space_left() const throw()
88  { return _M_end_of_storage - _M_finish; }
89 
90  _GLIBCXX_NODISCARD pointer
91  allocate(size_type __n)
92  { return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
93 
94  void
95  deallocate(pointer __p, size_type)
96  { ::operator delete(__p); }
97 
98  public:
99  // Members used: size(), push_back(), pop_back(),
100  // insert(iterator, const_reference), erase(iterator),
101  // begin(), end(), back(), operator[].
102 
103  __mini_vector()
104  : _M_start(0), _M_finish(0), _M_end_of_storage(0) { }
105 
106  size_type
107  size() const throw()
108  { return _M_finish - _M_start; }
109 
110  iterator
111  begin() const throw()
112  { return this->_M_start; }
113 
114  iterator
115  end() const throw()
116  { return this->_M_finish; }
117 
118  reference
119  back() const throw()
120  { return *(this->end() - 1); }
121 
122  reference
123  operator[](const size_type __pos) const throw()
124  { return this->_M_start[__pos]; }
125 
126  void
127  insert(iterator __pos, const_reference __x);
128 
129  void
130  push_back(const_reference __x)
131  {
132  if (this->_M_space_left())
133  {
134  *this->end() = __x;
135  ++this->_M_finish;
136  }
137  else
138  this->insert(this->end(), __x);
139  }
140 
141  void
142  pop_back() throw()
143  { --this->_M_finish; }
144 
145  void
146  erase(iterator __pos) throw();
147 
148  void
149  clear() throw()
150  { this->_M_finish = this->_M_start; }
151  };
152 
153  // Out of line function definitions.
154  template<typename _Tp>
156  insert(iterator __pos, const_reference __x)
157  {
158  if (this->_M_space_left())
159  {
160  size_type __to_move = this->_M_finish - __pos;
161  iterator __dest = this->end();
162  iterator __src = this->end() - 1;
163 
164  ++this->_M_finish;
165  while (__to_move)
166  {
167  *__dest = *__src;
168  --__dest; --__src; --__to_move;
169  }
170  *__pos = __x;
171  }
172  else
173  {
174  size_type __new_size = this->size() ? this->size() * 2 : 1;
175  iterator __new_start = this->allocate(__new_size);
176  iterator __first = this->begin();
177  iterator __start = __new_start;
178  while (__first != __pos)
179  {
180  *__start = *__first;
181  ++__start; ++__first;
182  }
183  *__start = __x;
184  ++__start;
185  while (__first != this->end())
186  {
187  *__start = *__first;
188  ++__start; ++__first;
189  }
190  if (this->_M_start)
191  this->deallocate(this->_M_start, this->size());
192 
193  this->_M_start = __new_start;
194  this->_M_finish = __start;
195  this->_M_end_of_storage = this->_M_start + __new_size;
196  }
197  }
198 
199  template<typename _Tp>
200  void __mini_vector<_Tp>::
201  erase(iterator __pos) throw()
202  {
203  while (__pos + 1 != this->end())
204  {
205  *__pos = __pos[1];
206  ++__pos;
207  }
208  --this->_M_finish;
209  }
210 
211 
212  template<typename _Tp>
213  struct __mv_iter_traits
214  {
215  typedef typename _Tp::value_type value_type;
216  typedef typename _Tp::difference_type difference_type;
217  };
218 
219  template<typename _Tp>
220  struct __mv_iter_traits<_Tp*>
221  {
222  typedef _Tp value_type;
223  typedef std::ptrdiff_t difference_type;
224  };
225 
226  enum
227  {
228  bits_per_byte = 8,
229  bits_per_block = sizeof(std::size_t) * std::size_t(bits_per_byte)
230  };
231 
232  template<typename _ForwardIterator, typename _Tp, typename _Compare>
233  _ForwardIterator
234  __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
235  const _Tp& __val, _Compare __comp)
236  {
237  typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
238  _DistanceType;
239 
240  _DistanceType __len = __last - __first;
241  _DistanceType __half;
242  _ForwardIterator __middle;
243 
244  while (__len > 0)
245  {
246  __half = __len >> 1;
247  __middle = __first;
248  __middle += __half;
249  if (__comp(*__middle, __val))
250  {
251  __first = __middle;
252  ++__first;
253  __len = __len - __half - 1;
254  }
255  else
256  __len = __half;
257  }
258  return __first;
259  }
260 
261  /** @brief The number of Blocks pointed to by the address pair
262  * passed to the function.
263  */
264  template<typename _AddrPair>
265  inline std::size_t
266  __num_blocks(_AddrPair __ap)
267  { return (__ap.second - __ap.first) + 1; }
268 
269  /** @brief The number of Bit-maps pointed to by the address pair
270  * passed to the function.
271  */
272  template<typename _AddrPair>
273  inline std::size_t
274  __num_bitmaps(_AddrPair __ap)
275  { return __num_blocks(__ap) / std::size_t(bits_per_block); }
276 
277  // _Tp should be a pointer type.
278  template<typename _Tp>
279  class _Inclusive_between
280  {
281  typedef _Tp pointer;
282  pointer _M_ptr_value;
283  typedef typename std::pair<_Tp, _Tp> _Block_pair;
284 
285  public:
286  _Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr)
287  { }
288 
289  bool
290  operator()(_Block_pair __bp) const throw()
291  {
292  if (std::less_equal<pointer>()(_M_ptr_value, __bp.second)
293  && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
294  return true;
295  else
296  return false;
297  }
298  };
299 
300  // Used to pass a Functor to functions by reference.
301  template<typename _Functor>
302  class _Functor_Ref
303  {
304  _Functor& _M_fref;
305 
306  public:
307  typedef typename _Functor::argument_type argument_type;
308  typedef typename _Functor::result_type result_type;
309 
310  _Functor_Ref(_Functor& __fref) : _M_fref(__fref)
311  { }
312 
313  result_type
314  operator()(argument_type __arg)
315  { return _M_fref(__arg); }
316  };
317 
318  /** @class _Ffit_finder bitmap_allocator.h bitmap_allocator.h
319  *
320  * @brief The class which acts as a predicate for applying the
321  * first-fit memory allocation policy for the bitmap allocator.
322  */
323  // _Tp should be a pointer type, and _Alloc is the Allocator for
324  // the vector.
325  template<typename _Tp>
327  {
330  typedef typename _BPVector::difference_type _Counter_type;
331 
332  std::size_t* _M_pbitmap;
333  _Counter_type _M_data_offset;
334 
335  public:
336  typedef bool result_type;
337  typedef _Block_pair argument_type;
338 
339  _Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
340  { }
341 
342  bool
343  operator()(_Block_pair __bp) throw()
344  {
345  using std::size_t;
346  // Set the _rover to the last physical location bitmap,
347  // which is the bitmap which belongs to the first free
348  // block. Thus, the bitmaps are in exact reverse order of
349  // the actual memory layout. So, we count down the bitmaps,
350  // which is the same as moving up the memory.
351 
352  // If the used count stored at the start of the Bit Map headers
353  // is equal to the number of Objects that the current Block can
354  // store, then there is definitely no space for another single
355  // object, so just return false.
356  _Counter_type __diff = __detail::__num_bitmaps(__bp);
357 
358  if (*(reinterpret_cast<size_t*>
359  (__bp.first) - (__diff + 1)) == __detail::__num_blocks(__bp))
360  return false;
361 
362  size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
363 
364  for (_Counter_type __i = 0; __i < __diff; ++__i)
365  {
366  _M_data_offset = __i;
367  if (*__rover)
368  {
369  _M_pbitmap = __rover;
370  return true;
371  }
372  --__rover;
373  }
374  return false;
375  }
376 
377  std::size_t*
378  _M_get() const throw()
379  { return _M_pbitmap; }
380 
381  _Counter_type
382  _M_offset() const throw()
383  { return _M_data_offset * std::size_t(bits_per_block); }
384  };
385 
386  /** @class _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
387  *
388  * @brief The bitmap counter which acts as the bitmap
389  * manipulator, and manages the bit-manipulation functions and
390  * the searching and identification functions on the bit-map.
391  */
392  // _Tp should be a pointer type.
393  template<typename _Tp>
395  {
396  typedef typename
398  typedef typename _BPVector::size_type _Index_type;
399  typedef _Tp pointer;
400 
401  _BPVector& _M_vbp;
402  std::size_t* _M_curr_bmap;
403  std::size_t* _M_last_bmap_in_block;
404  _Index_type _M_curr_index;
405 
406  public:
407  // Use the 2nd parameter with care. Make sure that such an
408  // entry exists in the vector before passing that particular
409  // index to this ctor.
410  _Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
411  { this->_M_reset(__index); }
412 
413  void
414  _M_reset(long __index = -1) throw()
415  {
416  if (__index == -1)
417  {
418  _M_curr_bmap = 0;
419  _M_curr_index = static_cast<_Index_type>(-1);
420  return;
421  }
422 
423  _M_curr_index = __index;
424  _M_curr_bmap = reinterpret_cast<std::size_t*>
425  (_M_vbp[_M_curr_index].first) - 1;
426 
427  _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
428 
429  _M_last_bmap_in_block = _M_curr_bmap
430  - ((_M_vbp[_M_curr_index].second
431  - _M_vbp[_M_curr_index].first + 1)
432  / std::size_t(bits_per_block) - 1);
433  }
434 
435  // Dangerous Function! Use with extreme care. Pass to this
436  // function ONLY those values that are known to be correct,
437  // otherwise this will mess up big time.
438  void
439  _M_set_internal_bitmap(std::size_t* __new_internal_marker) throw()
440  { _M_curr_bmap = __new_internal_marker; }
441 
442  bool
443  _M_finished() const throw()
444  { return(_M_curr_bmap == 0); }
445 
447  operator++() throw()
448  {
449  if (_M_curr_bmap == _M_last_bmap_in_block)
450  {
451  if (++_M_curr_index == _M_vbp.size())
452  _M_curr_bmap = 0;
453  else
454  this->_M_reset(_M_curr_index);
455  }
456  else
457  --_M_curr_bmap;
458  return *this;
459  }
460 
461  std::size_t*
462  _M_get() const throw()
463  { return _M_curr_bmap; }
464 
465  pointer
466  _M_base() const throw()
467  { return _M_vbp[_M_curr_index].first; }
468 
469  _Index_type
470  _M_offset() const throw()
471  {
472  return std::size_t(bits_per_block)
473  * ((reinterpret_cast<std::size_t*>(this->_M_base())
474  - _M_curr_bmap) - 1);
475  }
476 
477  _Index_type
478  _M_where() const throw()
479  { return _M_curr_index; }
480  };
481 
482  /** @brief Mark a memory address as allocated by re-setting the
483  * corresponding bit in the bit-map.
484  */
485  inline void
486  __bit_allocate(std::size_t* __pbmap, std::size_t __pos) throw()
487  {
488  std::size_t __mask = 1 << __pos;
489  __mask = ~__mask;
490  *__pbmap &= __mask;
491  }
492 
493  /** @brief Mark a memory address as free by setting the
494  * corresponding bit in the bit-map.
495  */
496  inline void
497  __bit_free(std::size_t* __pbmap, std::size_t __pos) throw()
498  {
499  std::size_t __mask = 1 << __pos;
500  *__pbmap |= __mask;
501  }
502  } // namespace __detail
503 
504  /** @brief Generic Version of the bsf instruction.
505  */
506  inline std::size_t
507  _Bit_scan_forward(std::size_t __num)
508  { return static_cast<std::size_t>(__builtin_ctzl(__num)); }
509 
510  /** @class free_list bitmap_allocator.h bitmap_allocator.h
511  *
512  * @brief The free list class for managing chunks of memory to be
513  * given to and returned by the bitmap_allocator.
514  */
515  class free_list
516  {
517  public:
518  typedef std::size_t* value_type;
520  typedef vector_type::iterator iterator;
521  typedef __mutex __mutex_type;
522 
523  private:
524  struct _LT_pointer_compare
525  {
526  bool
527  operator()(const std::size_t* __pui,
528  const std::size_t __cui) const throw()
529  { return *__pui < __cui; }
530  };
531 
532 #if defined __GTHREADS
533  __mutex_type&
534  _M_get_mutex()
535  {
536  static __mutex_type _S_mutex;
537  return _S_mutex;
538  }
539 #endif
540 
541  vector_type&
542  _M_get_free_list()
543  {
544  static vector_type _S_free_list;
545  return _S_free_list;
546  }
547 
548  /** @brief Performs validation of memory based on their size.
549  *
550  * @param __addr The pointer to the memory block to be
551  * validated.
552  *
553  * Validates the memory block passed to this function and
554  * appropriately performs the action of managing the free list of
555  * blocks by adding this block to the free list or deleting this
556  * or larger blocks from the free list.
557  */
558  void
559  _M_validate(std::size_t* __addr) throw()
560  {
561  vector_type& __free_list = _M_get_free_list();
562  const vector_type::size_type __max_size = 64;
563  if (__free_list.size() >= __max_size)
564  {
565  // Ok, the threshold value has been reached. We determine
566  // which block to remove from the list of free blocks.
567  if (*__addr >= *__free_list.back())
568  {
569  // Ok, the new block is greater than or equal to the
570  // last block in the list of free blocks. We just free
571  // the new block.
572  ::operator delete(static_cast<void*>(__addr));
573  return;
574  }
575  else
576  {
577  // Deallocate the last block in the list of free lists,
578  // and insert the new one in its correct position.
579  ::operator delete(static_cast<void*>(__free_list.back()));
580  __free_list.pop_back();
581  }
582  }
583 
584  // Just add the block to the list of free lists unconditionally.
585  iterator __temp = __detail::__lower_bound
586  (__free_list.begin(), __free_list.end(),
587  *__addr, _LT_pointer_compare());
588 
589  // We may insert the new free list before _temp;
590  __free_list.insert(__temp, __addr);
591  }
592 
593  /** @brief Decides whether the wastage of memory is acceptable for
594  * the current memory request and returns accordingly.
595  *
596  * @param __block_size The size of the block available in the free
597  * list.
598  *
599  * @param __required_size The required size of the memory block.
600  *
601  * @return true if the wastage incurred is acceptable, else returns
602  * false.
603  */
604  bool
605  _M_should_i_give(std::size_t __block_size,
606  std::size_t __required_size) throw()
607  {
608  const std::size_t __max_wastage_percentage = 36;
609  if (__block_size >= __required_size &&
610  (((__block_size - __required_size) * 100 / __block_size)
611  < __max_wastage_percentage))
612  return true;
613  else
614  return false;
615  }
616 
617  public:
618  /** @brief This function returns the block of memory to the
619  * internal free list.
620  *
621  * @param __addr The pointer to the memory block that was given
622  * by a call to the _M_get function.
623  */
624  inline void
625  _M_insert(std::size_t* __addr) throw()
626  {
627 #if defined __GTHREADS
628  __scoped_lock __bfl_lock(_M_get_mutex());
629 #endif
630  // Call _M_validate to decide what should be done with
631  // this particular free list.
632  this->_M_validate(reinterpret_cast<std::size_t*>(__addr) - 1);
633  // See discussion as to why this is 1!
634  }
635 
636  /** @brief This function gets a block of memory of the specified
637  * size from the free list.
638  *
639  * @param __sz The size in bytes of the memory required.
640  *
641  * @return A pointer to the new memory block of size at least
642  * equal to that requested.
643  */
644  std::size_t*
645  _M_get(std::size_t __sz) _GLIBCXX_THROW(std::bad_alloc);
646 
647  /** @brief This function just clears the internal Free List, and
648  * gives back all the memory to the OS.
649  */
650  void
652  };
653 
654 
655  // Forward declare the class.
656  template<typename _Tp>
657  class bitmap_allocator;
658 
659  // Specialize for void:
660  template<>
661  class bitmap_allocator<void>
662  {
663  public:
664  typedef void* pointer;
665  typedef const void* const_pointer;
666 
667  // Reference-to-void members are impossible.
668  typedef void value_type;
669  template<typename _Tp1>
670  struct rebind
671  {
672  typedef bitmap_allocator<_Tp1> other;
673  };
674  };
675 
676  /**
677  * @brief Bitmap Allocator, primary template.
678  * @ingroup allocators
679  */
680  template<typename _Tp>
681  class bitmap_allocator : private free_list
682  {
683  public:
684  typedef std::size_t size_type;
685  typedef std::ptrdiff_t difference_type;
686  typedef _Tp* pointer;
687  typedef const _Tp* const_pointer;
688  typedef _Tp& reference;
689  typedef const _Tp& const_reference;
690  typedef _Tp value_type;
691  typedef free_list::__mutex_type __mutex_type;
692 
693  template<typename _Tp1>
694  struct rebind
695  {
696  typedef bitmap_allocator<_Tp1> other;
697  };
698 
699 #if __cplusplus >= 201103L
700  // _GLIBCXX_RESOLVE_LIB_DEFECTS
701  // 2103. propagate_on_container_move_assignment
703 #endif
704 
705  private:
706  template<std::size_t _BSize, std::size_t _AlignSize>
707  struct aligned_size
708  {
709  enum
710  {
711  modulus = _BSize % _AlignSize,
712  value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
713  };
714  };
715 
716  struct _Alloc_block
717  {
718  char __M_unused[aligned_size<sizeof(value_type),
719  _BALLOC_ALIGN_BYTES>::value];
720  };
721 
722 
724 
726  typedef typename _BPVector::iterator _BPiter;
727 
728  template<typename _Predicate>
729  static _BPiter
730  _S_find(_Predicate __p)
731  {
732  _BPiter __first = _S_mem_blocks.begin();
733  while (__first != _S_mem_blocks.end() && !__p(*__first))
734  ++__first;
735  return __first;
736  }
737 
738 #if defined _GLIBCXX_DEBUG
739  // Complexity: O(lg(N)). Where, N is the number of block of size
740  // sizeof(value_type).
741  void
742  _S_check_for_free_blocks() throw()
743  {
744  typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
745  _BPiter __bpi = _S_find(_FFF());
746 
747  _GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
748  }
749 #endif
750 
751  /** @brief Responsible for exponentially growing the internal
752  * memory pool.
753  *
754  * @throw std::bad_alloc. If memory cannot be allocated.
755  *
756  * Complexity: O(1), but internally depends upon the
757  * complexity of the function free_list::_M_get. The part where
758  * the bitmap headers are written has complexity: O(X),where X
759  * is the number of blocks of size sizeof(value_type) within
760  * the newly acquired block. Having a tight bound.
761  */
762  void
763  _S_refill_pool() _GLIBCXX_THROW(std::bad_alloc)
764  {
765  using std::size_t;
766 #if defined _GLIBCXX_DEBUG
767  _S_check_for_free_blocks();
768 #endif
769 
770  const size_t __num_bitmaps = (_S_block_size
771  / size_t(__detail::bits_per_block));
772  const size_t __size_to_allocate = sizeof(size_t)
773  + _S_block_size * sizeof(_Alloc_block)
774  + __num_bitmaps * sizeof(size_t);
775 
776  size_t* __temp =
777  reinterpret_cast<size_t*>(this->_M_get(__size_to_allocate));
778  *__temp = 0;
779  ++__temp;
780 
781  // The Header information goes at the Beginning of the Block.
782  _Block_pair __bp =
783  std::make_pair(reinterpret_cast<_Alloc_block*>
784  (__temp + __num_bitmaps),
785  reinterpret_cast<_Alloc_block*>
786  (__temp + __num_bitmaps)
787  + _S_block_size - 1);
788 
789  // Fill the Vector with this information.
790  _S_mem_blocks.push_back(__bp);
791 
792  for (size_t __i = 0; __i < __num_bitmaps; ++__i)
793  __temp[__i] = ~static_cast<size_t>(0); // 1 Indicates all Free.
794 
795  _S_block_size *= 2;
796  }
797 
798  static _BPVector _S_mem_blocks;
799  static std::size_t _S_block_size;
800  static __detail::_Bitmap_counter<_Alloc_block*> _S_last_request;
801  static typename _BPVector::size_type _S_last_dealloc_index;
802 #if defined __GTHREADS
803  static __mutex_type _S_mut;
804 #endif
805 
806  public:
807 
808  /** @brief Allocates memory for a single object of size
809  * sizeof(_Tp).
810  *
811  * @throw std::bad_alloc. If memory cannot be allocated.
812  *
813  * Complexity: Worst case complexity is O(N), but that
814  * is hardly ever hit. If and when this particular case is
815  * encountered, the next few cases are guaranteed to have a
816  * worst case complexity of O(1)! That's why this function
817  * performs very well on average. You can consider this
818  * function to have a complexity referred to commonly as:
819  * Amortized Constant time.
820  */
821  pointer
822  _M_allocate_single_object() _GLIBCXX_THROW(std::bad_alloc)
823  {
824  using std::size_t;
825 #if defined __GTHREADS
826  __scoped_lock __bit_lock(_S_mut);
827 #endif
828 
829  // The algorithm is something like this: The last_request
830  // variable points to the last accessed Bit Map. When such a
831  // condition occurs, we try to find a free block in the
832  // current bitmap, or succeeding bitmaps until the last bitmap
833  // is reached. If no free block turns up, we resort to First
834  // Fit method.
835 
836  // WARNING: Do not re-order the condition in the while
837  // statement below, because it relies on C++'s short-circuit
838  // evaluation. The return from _S_last_request->_M_get() will
839  // NOT be dereference able if _S_last_request->_M_finished()
840  // returns true. This would inevitably lead to a NULL pointer
841  // dereference if tinkered with.
842  while (_S_last_request._M_finished() == false
843  && (*(_S_last_request._M_get()) == 0))
844  _S_last_request.operator++();
845 
846  if (__builtin_expect(_S_last_request._M_finished() == true, false))
847  {
848  // Fall Back to First Fit algorithm.
849  typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
850  _FFF __fff;
851  _BPiter __bpi = _S_find(__detail::_Functor_Ref<_FFF>(__fff));
852 
853  if (__bpi != _S_mem_blocks.end())
854  {
855  // Search was successful. Ok, now mark the first bit from
856  // the right as 0, meaning Allocated. This bit is obtained
857  // by calling _M_get() on __fff.
858  size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
859  __detail::__bit_allocate(__fff._M_get(), __nz_bit);
860 
861  _S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
862 
863  // Now, get the address of the bit we marked as allocated.
864  pointer __ret = reinterpret_cast<pointer>
865  (__bpi->first + __fff._M_offset() + __nz_bit);
866  size_t* __puse_count =
867  reinterpret_cast<size_t*>
868  (__bpi->first) - (__detail::__num_bitmaps(*__bpi) + 1);
869 
870  ++(*__puse_count);
871  return __ret;
872  }
873  else
874  {
875  // Search was unsuccessful. We Add more memory to the
876  // pool by calling _S_refill_pool().
877  _S_refill_pool();
878 
879  // _M_Reset the _S_last_request structure to the first
880  // free block's bit map.
881  _S_last_request._M_reset(_S_mem_blocks.size() - 1);
882 
883  // Now, mark that bit as allocated.
884  }
885  }
886 
887  // _S_last_request holds a pointer to a valid bit map, that
888  // points to a free block in memory.
889  size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
890  __detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);
891 
892  pointer __ret = reinterpret_cast<pointer>
893  (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
894 
895  size_t* __puse_count = reinterpret_cast<size_t*>
896  (_S_mem_blocks[_S_last_request._M_where()].first)
897  - (__detail::
898  __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
899 
900  ++(*__puse_count);
901  return __ret;
902  }
903 
904  /** @brief Deallocates memory that belongs to a single object of
905  * size sizeof(_Tp).
906  *
907  * Complexity: O(lg(N)), but the worst case is not hit
908  * often! This is because containers usually deallocate memory
909  * close to each other and this case is handled in O(1) time by
910  * the deallocate function.
911  */
912  void
913  _M_deallocate_single_object(pointer __p) throw()
914  {
915  using std::size_t;
916 #if defined __GTHREADS
917  __scoped_lock __bit_lock(_S_mut);
918 #endif
919  _Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
920 
921  typedef typename _BPVector::iterator _Iterator;
922  typedef typename _BPVector::difference_type _Difference_type;
923 
924  _Difference_type __diff;
925  long __displacement;
926 
927  _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
928 
929  __detail::_Inclusive_between<_Alloc_block*> __ibt(__real_p);
930  if (__ibt(_S_mem_blocks[_S_last_dealloc_index]))
931  {
932  _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
933  <= _S_mem_blocks.size() - 1);
934 
935  // Initial Assumption was correct!
936  __diff = _S_last_dealloc_index;
937  __displacement = __real_p - _S_mem_blocks[__diff].first;
938  }
939  else
940  {
941  _Iterator _iter = _S_find(__ibt);
942 
943  _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
944 
945  __diff = _iter - _S_mem_blocks.begin();
946  __displacement = __real_p - _S_mem_blocks[__diff].first;
947  _S_last_dealloc_index = __diff;
948  }
949 
950  // Get the position of the iterator that has been found.
951  const size_t __rotate = (__displacement
952  % size_t(__detail::bits_per_block));
953  size_t* __bitmapC =
954  reinterpret_cast<size_t*>
955  (_S_mem_blocks[__diff].first) - 1;
956  __bitmapC -= (__displacement / size_t(__detail::bits_per_block));
957 
958  __detail::__bit_free(__bitmapC, __rotate);
959  size_t* __puse_count = reinterpret_cast<size_t*>
960  (_S_mem_blocks[__diff].first)
961  - (__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
962 
963  _GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
964 
965  --(*__puse_count);
966 
967  if (__builtin_expect(*__puse_count == 0, false))
968  {
969  _S_block_size /= 2;
970 
971  // We can safely remove this block.
972  // _Block_pair __bp = _S_mem_blocks[__diff];
973  this->_M_insert(__puse_count);
974  _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
975 
976  // Reset the _S_last_request variable to reflect the
977  // erased block. We do this to protect future requests
978  // after the last block has been removed from a particular
979  // memory Chunk, which in turn has been returned to the
980  // free list, and hence had been erased from the vector,
981  // so the size of the vector gets reduced by 1.
982  if ((_Difference_type)_S_last_request._M_where() >= __diff--)
983  _S_last_request._M_reset(__diff);
984 
985  // If the Index into the vector of the region of memory
986  // that might hold the next address that will be passed to
987  // deallocated may have been invalidated due to the above
988  // erase procedure being called on the vector, hence we
989  // try to restore this invariant too.
990  if (_S_last_dealloc_index >= _S_mem_blocks.size())
991  {
992  _S_last_dealloc_index =(__diff != -1 ? __diff : 0);
993  _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
994  }
995  }
996  }
997 
998  public:
999  bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
1000  { }
1001 
1002  bitmap_allocator(const bitmap_allocator&) _GLIBCXX_USE_NOEXCEPT
1003  { }
1004 
1005  template<typename _Tp1>
1006  bitmap_allocator(const bitmap_allocator<_Tp1>&) _GLIBCXX_USE_NOEXCEPT
1007  { }
1008 
1009  ~bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
1010  { }
1011 
1012  _GLIBCXX_NODISCARD pointer
1013  allocate(size_type __n)
1014  {
1015  if (__n > this->max_size())
1016  std::__throw_bad_alloc();
1017 
1018 #if __cpp_aligned_new
1019  if (alignof(value_type) > __STDCPP_DEFAULT_NEW_ALIGNMENT__)
1020  {
1021  const size_type __b = __n * sizeof(value_type);
1022  std::align_val_t __al = std::align_val_t(alignof(value_type));
1023  return static_cast<pointer>(::operator new(__b, __al));
1024  }
1025 #endif
1026 
1027  if (__builtin_expect(__n == 1, true))
1028  return this->_M_allocate_single_object();
1029  else
1030  {
1031  const size_type __b = __n * sizeof(value_type);
1032  return reinterpret_cast<pointer>(::operator new(__b));
1033  }
1034  }
1035 
1036  _GLIBCXX_NODISCARD pointer
1037  allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
1038  { return allocate(__n); }
1039 
1040  void
1041  deallocate(pointer __p, size_type __n) throw()
1042  {
1043  if (__builtin_expect(__p != 0, true))
1044  {
1045 #if __cpp_aligned_new
1046  // Types with extended alignment are handled by operator delete.
1047  if (alignof(value_type) > __STDCPP_DEFAULT_NEW_ALIGNMENT__)
1048  {
1049  ::operator delete(__p, std::align_val_t(alignof(value_type)));
1050  return;
1051  }
1052 #endif
1053 
1054  if (__builtin_expect(__n == 1, true))
1055  this->_M_deallocate_single_object(__p);
1056  else
1057  ::operator delete(__p);
1058  }
1059  }
1060 
1061  pointer
1062  address(reference __r) const _GLIBCXX_NOEXCEPT
1063  { return std::__addressof(__r); }
1064 
1065  const_pointer
1066  address(const_reference __r) const _GLIBCXX_NOEXCEPT
1067  { return std::__addressof(__r); }
1068 
1069  size_type
1070  max_size() const _GLIBCXX_USE_NOEXCEPT
1071  { return size_type(-1) / sizeof(value_type); }
1072 
1073 #if __cplusplus >= 201103L
1074  template<typename _Up, typename... _Args>
1075  void
1076  construct(_Up* __p, _Args&&... __args)
1077  { ::new((void *)__p) _Up(std::forward<_Args>(__args)...); }
1078 
1079  template<typename _Up>
1080  void
1081  destroy(_Up* __p)
1082  { __p->~_Up(); }
1083 #else
1084  void
1085  construct(pointer __p, const_reference __data)
1086  { ::new((void *)__p) value_type(__data); }
1087 
1088  void
1089  destroy(pointer __p)
1090  { __p->~value_type(); }
1091 #endif
1092  };
1093 
1094  template<typename _Tp1, typename _Tp2>
1095  bool
1096  operator==(const bitmap_allocator<_Tp1>&,
1097  const bitmap_allocator<_Tp2>&) throw()
1098  { return true; }
1099 
1100 #if __cpp_impl_three_way_comparison < 201907L
1101  template<typename _Tp1, typename _Tp2>
1102  bool
1103  operator!=(const bitmap_allocator<_Tp1>&,
1104  const bitmap_allocator<_Tp2>&) throw()
1105  { return false; }
1106 #endif
1107 
1108  // Static member definitions.
1109  template<typename _Tp>
1110  typename bitmap_allocator<_Tp>::_BPVector
1111  bitmap_allocator<_Tp>::_S_mem_blocks;
1112 
1113  template<typename _Tp>
1114  std::size_t bitmap_allocator<_Tp>::_S_block_size
1115  = 2 * std::size_t(__detail::bits_per_block);
1116 
1117  template<typename _Tp>
1118  typename bitmap_allocator<_Tp>::_BPVector::size_type
1119  bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
1120 
1121  template<typename _Tp>
1122  __detail::_Bitmap_counter
1123  <typename bitmap_allocator<_Tp>::_Alloc_block*>
1124  bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
1125 
1126 #if defined __GTHREADS
1127  template<typename _Tp>
1128  typename bitmap_allocator<_Tp>::__mutex_type
1129  bitmap_allocator<_Tp>::_S_mut;
1130 #endif
1131 
1132 _GLIBCXX_END_NAMESPACE_VERSION
1133 } // namespace __gnu_cxx
1134 
1135 #endif
#define _BALLOC_ALIGN_BYTES
The constant in the expression below is the alignment required in bytes.
constexpr _Tp * __addressof(_Tp &__r) noexcept
Same as C++11 std::addressof.
Definition: move.h:49
ISO C++ entities toplevel namespace is std.
GNU extensions for public use.
std::size_t _Bit_scan_forward(std::size_t __num)
Generic Version of the bsf instruction.
void __bit_free(std::size_t *__pbmap, std::size_t __pos)
Mark a memory address as free by setting the corresponding bit in the bit-map.
std::size_t __num_bitmaps(_AddrPair __ap)
The number of Bit-maps pointed to by the address pair passed to the function.
void __bit_allocate(std::size_t *__pbmap, std::size_t __pos)
Mark a memory address as allocated by re-setting the corresponding bit in the bit-map.
std::size_t __num_blocks(_AddrPair __ap)
The number of Blocks pointed to by the address pair passed to the function.
Exception possibly thrown by new.
Definition: new:56
integral_constant
Definition: type_traits:63
One of the comparison functors.
Definition: stl_function.h:414
One of the comparison functors.
Definition: stl_function.h:424
Struct holding two objects of arbitrary type.
Definition: stl_pair.h:187
_T1 first
The first member.
Definition: stl_pair.h:191
__mini_vector<> is a stripped down version of the full-fledged std::vector<>.
The class which acts as a predicate for applying the first-fit memory allocation policy for the bitma...
The bitmap counter which acts as the bitmap manipulator, and manages the bit-manipulation functions a...
The free list class for managing chunks of memory to be given to and returned by the bitmap_allocator...
void _M_insert(std::size_t *__addr)
This function returns the block of memory to the internal free list.
void _M_clear()
This function just clears the internal Free List, and gives back all the memory to the OS.
std::size_t * _M_get(std::size_t __sz)
This function gets a block of memory of the specified size from the free list.
Bitmap Allocator, primary template.
pointer _M_allocate_single_object()
Allocates memory for a single object of size sizeof(_Tp).
void _M_deallocate_single_object(pointer __p)
Deallocates memory that belongs to a single object of size sizeof(_Tp).
Scoped lock idiom.
Definition: concurrence.h:229