libstdc++
simd.h
1 // Definition of the public simd interfaces -*- C++ -*-
2 
3 // Copyright (C) 2020-2022 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 #ifndef _GLIBCXX_EXPERIMENTAL_SIMD_H
26 #define _GLIBCXX_EXPERIMENTAL_SIMD_H
27 
28 #if __cplusplus >= 201703L
29 
30 #include "simd_detail.h"
31 #include "numeric_traits.h"
32 #include <bit>
33 #include <bitset>
34 #ifdef _GLIBCXX_DEBUG_UB
35 #include <cstdio> // for stderr
36 #endif
37 #include <cstring>
38 #include <cmath>
39 #include <functional>
40 #include <iosfwd>
41 #include <utility>
42 
43 #if _GLIBCXX_SIMD_X86INTRIN
44 #include <x86intrin.h>
45 #elif _GLIBCXX_SIMD_HAVE_NEON
46 #include <arm_neon.h>
47 #endif
48 
49 /** @ingroup ts_simd
50  * @{
51  */
52 /* There are several closely related types, with the following naming
53  * convention:
54  * _Tp: vectorizable (arithmetic) type (or any type)
55  * _TV: __vector_type_t<_Tp, _Np>
56  * _TW: _SimdWrapper<_Tp, _Np>
57  * _TI: __intrinsic_type_t<_Tp, _Np>
58  * _TVT: _VectorTraits<_TV> or _VectorTraits<_TW>
59  * If one additional type is needed use _U instead of _T.
60  * Otherwise use _T\d, _TV\d, _TW\d, TI\d, _TVT\d.
61  *
62  * More naming conventions:
63  * _Ap or _Abi: An ABI tag from the simd_abi namespace
64  * _Ip: often used for integer types with sizeof(_Ip) == sizeof(_Tp),
65  * _IV, _IW as for _TV, _TW
66  * _Np: number of elements (not bytes)
67  * _Bytes: number of bytes
68  *
69  * Variable names:
70  * __k: mask object (vector- or bitmask)
71  */
72 _GLIBCXX_SIMD_BEGIN_NAMESPACE
73 
74 #if !_GLIBCXX_SIMD_X86INTRIN
75 using __m128 [[__gnu__::__vector_size__(16)]] = float;
76 using __m128d [[__gnu__::__vector_size__(16)]] = double;
77 using __m128i [[__gnu__::__vector_size__(16)]] = long long;
78 using __m256 [[__gnu__::__vector_size__(32)]] = float;
79 using __m256d [[__gnu__::__vector_size__(32)]] = double;
80 using __m256i [[__gnu__::__vector_size__(32)]] = long long;
81 using __m512 [[__gnu__::__vector_size__(64)]] = float;
82 using __m512d [[__gnu__::__vector_size__(64)]] = double;
83 using __m512i [[__gnu__::__vector_size__(64)]] = long long;
84 #endif
85 
86 namespace simd_abi {
87 // simd_abi forward declarations {{{
88 // implementation details:
89 struct _Scalar;
90 
91 template <int _Np>
92  struct _Fixed;
93 
94 // There are two major ABIs that appear on different architectures.
95 // Both have non-boolean values packed into an N Byte register
96 // -> #elements = N / sizeof(T)
97 // Masks differ:
98 // 1. Use value vector registers for masks (all 0 or all 1)
99 // 2. Use bitmasks (mask registers) with one bit per value in the corresponding
100 // value vector
101 //
102 // Both can be partially used, masking off the rest when doing horizontal
103 // operations or operations that can trap (e.g. FP_INVALID or integer division
104 // by 0). This is encoded as the number of used bytes.
105 template <int _UsedBytes>
106  struct _VecBuiltin;
107 
108 template <int _UsedBytes>
109  struct _VecBltnBtmsk;
110 
111 template <typename _Tp, int _Np>
112  using _VecN = _VecBuiltin<sizeof(_Tp) * _Np>;
113 
114 template <int _UsedBytes = 16>
115  using _Sse = _VecBuiltin<_UsedBytes>;
116 
117 template <int _UsedBytes = 32>
118  using _Avx = _VecBuiltin<_UsedBytes>;
119 
120 template <int _UsedBytes = 64>
121  using _Avx512 = _VecBltnBtmsk<_UsedBytes>;
122 
123 template <int _UsedBytes = 16>
124  using _Neon = _VecBuiltin<_UsedBytes>;
125 
126 // implementation-defined:
127 using __sse = _Sse<>;
128 using __avx = _Avx<>;
129 using __avx512 = _Avx512<>;
130 using __neon = _Neon<>;
131 using __neon128 = _Neon<16>;
132 using __neon64 = _Neon<8>;
133 
134 // standard:
135 template <typename _Tp, size_t _Np, typename...>
136  struct deduce;
137 
138 template <int _Np>
139  using fixed_size = _Fixed<_Np>;
140 
141 using scalar = _Scalar;
142 
143 // }}}
144 } // namespace simd_abi
145 // forward declarations is_simd(_mask), simd(_mask), simd_size {{{
146 template <typename _Tp>
147  struct is_simd;
148 
149 template <typename _Tp>
150  struct is_simd_mask;
151 
152 template <typename _Tp, typename _Abi>
153  class simd;
154 
155 template <typename _Tp, typename _Abi>
156  class simd_mask;
157 
158 template <typename _Tp, typename _Abi>
159  struct simd_size;
160 
161 // }}}
162 // load/store flags {{{
163 struct element_aligned_tag
164 {
165  template <typename _Tp, typename _Up = typename _Tp::value_type>
166  static constexpr size_t _S_alignment = alignof(_Up);
167 
168  template <typename _Tp, typename _Up>
169  _GLIBCXX_SIMD_INTRINSIC static constexpr _Up*
170  _S_apply(_Up* __ptr)
171  { return __ptr; }
172 };
173 
174 struct vector_aligned_tag
175 {
176  template <typename _Tp, typename _Up = typename _Tp::value_type>
177  static constexpr size_t _S_alignment
178  = std::__bit_ceil(sizeof(_Up) * _Tp::size());
179 
180  template <typename _Tp, typename _Up>
181  _GLIBCXX_SIMD_INTRINSIC static constexpr _Up*
182  _S_apply(_Up* __ptr)
183  {
184  return static_cast<_Up*>(
185  __builtin_assume_aligned(__ptr, _S_alignment<_Tp, _Up>));
186  }
187 };
188 
189 template <size_t _Np> struct overaligned_tag
190 {
191  template <typename _Tp, typename _Up = typename _Tp::value_type>
192  static constexpr size_t _S_alignment = _Np;
193 
194  template <typename _Tp, typename _Up>
195  _GLIBCXX_SIMD_INTRINSIC static constexpr _Up*
196  _S_apply(_Up* __ptr)
197  { return static_cast<_Up*>(__builtin_assume_aligned(__ptr, _Np)); }
198 };
199 
200 inline constexpr element_aligned_tag element_aligned = {};
201 
202 inline constexpr vector_aligned_tag vector_aligned = {};
203 
204 template <size_t _Np>
205  inline constexpr overaligned_tag<_Np> overaligned = {};
206 
207 // }}}
208 template <size_t _Xp>
209  using _SizeConstant = integral_constant<size_t, _Xp>;
210 // constexpr feature detection{{{
211 constexpr inline bool __have_mmx = _GLIBCXX_SIMD_HAVE_MMX;
212 constexpr inline bool __have_sse = _GLIBCXX_SIMD_HAVE_SSE;
213 constexpr inline bool __have_sse2 = _GLIBCXX_SIMD_HAVE_SSE2;
214 constexpr inline bool __have_sse3 = _GLIBCXX_SIMD_HAVE_SSE3;
215 constexpr inline bool __have_ssse3 = _GLIBCXX_SIMD_HAVE_SSSE3;
216 constexpr inline bool __have_sse4_1 = _GLIBCXX_SIMD_HAVE_SSE4_1;
217 constexpr inline bool __have_sse4_2 = _GLIBCXX_SIMD_HAVE_SSE4_2;
218 constexpr inline bool __have_xop = _GLIBCXX_SIMD_HAVE_XOP;
219 constexpr inline bool __have_avx = _GLIBCXX_SIMD_HAVE_AVX;
220 constexpr inline bool __have_avx2 = _GLIBCXX_SIMD_HAVE_AVX2;
221 constexpr inline bool __have_bmi = _GLIBCXX_SIMD_HAVE_BMI1;
222 constexpr inline bool __have_bmi2 = _GLIBCXX_SIMD_HAVE_BMI2;
223 constexpr inline bool __have_lzcnt = _GLIBCXX_SIMD_HAVE_LZCNT;
224 constexpr inline bool __have_sse4a = _GLIBCXX_SIMD_HAVE_SSE4A;
225 constexpr inline bool __have_fma = _GLIBCXX_SIMD_HAVE_FMA;
226 constexpr inline bool __have_fma4 = _GLIBCXX_SIMD_HAVE_FMA4;
227 constexpr inline bool __have_f16c = _GLIBCXX_SIMD_HAVE_F16C;
228 constexpr inline bool __have_popcnt = _GLIBCXX_SIMD_HAVE_POPCNT;
229 constexpr inline bool __have_avx512f = _GLIBCXX_SIMD_HAVE_AVX512F;
230 constexpr inline bool __have_avx512dq = _GLIBCXX_SIMD_HAVE_AVX512DQ;
231 constexpr inline bool __have_avx512vl = _GLIBCXX_SIMD_HAVE_AVX512VL;
232 constexpr inline bool __have_avx512bw = _GLIBCXX_SIMD_HAVE_AVX512BW;
233 constexpr inline bool __have_avx512dq_vl = __have_avx512dq && __have_avx512vl;
234 constexpr inline bool __have_avx512bw_vl = __have_avx512bw && __have_avx512vl;
235 constexpr inline bool __have_avx512bitalg = _GLIBCXX_SIMD_HAVE_AVX512BITALG;
236 constexpr inline bool __have_avx512vbmi2 = _GLIBCXX_SIMD_HAVE_AVX512VBMI2;
237 constexpr inline bool __have_avx512vbmi = _GLIBCXX_SIMD_HAVE_AVX512VBMI;
238 constexpr inline bool __have_avx512ifma = _GLIBCXX_SIMD_HAVE_AVX512IFMA;
239 constexpr inline bool __have_avx512cd = _GLIBCXX_SIMD_HAVE_AVX512CD;
240 constexpr inline bool __have_avx512vnni = _GLIBCXX_SIMD_HAVE_AVX512VNNI;
241 constexpr inline bool __have_avx512vpopcntdq = _GLIBCXX_SIMD_HAVE_AVX512VPOPCNTDQ;
242 constexpr inline bool __have_avx512vp2intersect = _GLIBCXX_SIMD_HAVE_AVX512VP2INTERSECT;
243 
244 constexpr inline bool __have_neon = _GLIBCXX_SIMD_HAVE_NEON;
245 constexpr inline bool __have_neon_a32 = _GLIBCXX_SIMD_HAVE_NEON_A32;
246 constexpr inline bool __have_neon_a64 = _GLIBCXX_SIMD_HAVE_NEON_A64;
247 constexpr inline bool __support_neon_float =
248 #if defined __GCC_IEC_559
249  __GCC_IEC_559 == 0;
250 #elif defined __FAST_MATH__
251  true;
252 #else
253  false;
254 #endif
255 
256 #ifdef _ARCH_PWR10
257 constexpr inline bool __have_power10vec = true;
258 #else
259 constexpr inline bool __have_power10vec = false;
260 #endif
261 #ifdef __POWER9_VECTOR__
262 constexpr inline bool __have_power9vec = true;
263 #else
264 constexpr inline bool __have_power9vec = false;
265 #endif
266 #if defined __POWER8_VECTOR__
267 constexpr inline bool __have_power8vec = true;
268 #else
269 constexpr inline bool __have_power8vec = __have_power9vec;
270 #endif
271 #if defined __VSX__
272 constexpr inline bool __have_power_vsx = true;
273 #else
274 constexpr inline bool __have_power_vsx = __have_power8vec;
275 #endif
276 #if defined __ALTIVEC__
277 constexpr inline bool __have_power_vmx = true;
278 #else
279 constexpr inline bool __have_power_vmx = __have_power_vsx;
280 #endif
281 
282 // }}}
283 
284 namespace __detail
285 {
286 #ifdef math_errhandling
287  // Determines _S_handle_fpexcept from math_errhandling if it is defined and expands to a constant
288  // expression. math_errhandling may expand to an extern symbol, in which case a constexpr value
289  // must be guessed.
290  template <int = math_errhandling>
291  constexpr bool __handle_fpexcept_impl(int)
292  { return math_errhandling & MATH_ERREXCEPT; }
293 #endif
294 
295  // Fallback if math_errhandling doesn't work: with fast-math assume floating-point exceptions are
296  // ignored, otherwise implement correct exception behavior.
297  constexpr bool __handle_fpexcept_impl(float)
298  {
299 #if defined __FAST_MATH__
300  return false;
301 #else
302  return true;
303 #endif
304  }
305 
306  /// True if math functions must raise floating-point exceptions as specified by C17.
307  static constexpr bool _S_handle_fpexcept = __handle_fpexcept_impl(0);
308 
309  constexpr std::uint_least64_t
310  __floating_point_flags()
311  {
312  std::uint_least64_t __flags = 0;
313  if constexpr (_S_handle_fpexcept)
314  __flags |= 1;
315 #ifdef __FAST_MATH__
316  __flags |= 1 << 1;
317 #elif __FINITE_MATH_ONLY__
318  __flags |= 2 << 1;
319 #elif __GCC_IEC_559 < 2
320  __flags |= 3 << 1;
321 #endif
322  __flags |= (__FLT_EVAL_METHOD__ + 1) << 3;
323  return __flags;
324  }
325 
326  constexpr std::uint_least64_t
327  __machine_flags()
328  {
329  if constexpr (__have_mmx || __have_sse)
330  return __have_mmx
331  | (__have_sse << 1)
332  | (__have_sse2 << 2)
333  | (__have_sse3 << 3)
334  | (__have_ssse3 << 4)
335  | (__have_sse4_1 << 5)
336  | (__have_sse4_2 << 6)
337  | (__have_xop << 7)
338  | (__have_avx << 8)
339  | (__have_avx2 << 9)
340  | (__have_bmi << 10)
341  | (__have_bmi2 << 11)
342  | (__have_lzcnt << 12)
343  | (__have_sse4a << 13)
344  | (__have_fma << 14)
345  | (__have_fma4 << 15)
346  | (__have_f16c << 16)
347  | (__have_popcnt << 17)
348  | (__have_avx512f << 18)
349  | (__have_avx512dq << 19)
350  | (__have_avx512vl << 20)
351  | (__have_avx512bw << 21)
352  | (__have_avx512bitalg << 22)
353  | (__have_avx512vbmi2 << 23)
354  | (__have_avx512vbmi << 24)
355  | (__have_avx512ifma << 25)
356  | (__have_avx512cd << 26)
357  | (__have_avx512vnni << 27)
358  | (__have_avx512vpopcntdq << 28)
359  | (__have_avx512vp2intersect << 29);
360  else if constexpr (__have_neon)
361  return __have_neon
362  | (__have_neon_a32 << 1)
363  | (__have_neon_a64 << 2)
364  | (__have_neon_a64 << 2)
365  | (__support_neon_float << 3);
366  else if constexpr (__have_power_vmx)
367  return __have_power_vmx
368  | (__have_power_vsx << 1)
369  | (__have_power8vec << 2)
370  | (__have_power9vec << 3)
371  | (__have_power10vec << 4);
372  else
373  return 0;
374  }
375 
376  namespace
377  {
378  struct _OdrEnforcer {};
379  }
380 
381  template <std::uint_least64_t...>
382  struct _MachineFlagsTemplate {};
383 
384  /**@internal
385  * Use this type as default template argument to all function templates that
386  * are not declared always_inline. It ensures, that a function
387  * specialization, which the compiler decides not to inline, has a unique symbol
388  * (_OdrEnforcer) or a symbol matching the machine/architecture flags
389  * (_MachineFlagsTemplate). This helps to avoid ODR violations in cases where
390  * users link TUs compiled with different flags. This is especially important
391  * for using simd in libraries.
392  */
393  using __odr_helper
394  = conditional_t<__machine_flags() == 0, _OdrEnforcer,
395  _MachineFlagsTemplate<__machine_flags(), __floating_point_flags()>>;
396 
397  struct _Minimum
398  {
399  template <typename _Tp>
400  _GLIBCXX_SIMD_INTRINSIC constexpr
401  _Tp
402  operator()(_Tp __a, _Tp __b) const
403  {
404  using std::min;
405  return min(__a, __b);
406  }
407  };
408 
409  struct _Maximum
410  {
411  template <typename _Tp>
412  _GLIBCXX_SIMD_INTRINSIC constexpr
413  _Tp
414  operator()(_Tp __a, _Tp __b) const
415  {
416  using std::max;
417  return max(__a, __b);
418  }
419  };
420 } // namespace __detail
421 
422 // unrolled/pack execution helpers
423 // __execute_n_times{{{
424 template <typename _Fp, size_t... _I>
425  [[__gnu__::__flatten__]] _GLIBCXX_SIMD_INTRINSIC constexpr
426  void
427  __execute_on_index_sequence(_Fp&& __f, index_sequence<_I...>)
428  { ((void)__f(_SizeConstant<_I>()), ...); }
429 
430 template <typename _Fp>
431  _GLIBCXX_SIMD_INTRINSIC constexpr void
432  __execute_on_index_sequence(_Fp&&, index_sequence<>)
433  { }
434 
435 template <size_t _Np, typename _Fp>
436  _GLIBCXX_SIMD_INTRINSIC constexpr void
437  __execute_n_times(_Fp&& __f)
438  {
439  __execute_on_index_sequence(static_cast<_Fp&&>(__f),
440  make_index_sequence<_Np>{});
441  }
442 
443 // }}}
444 // __generate_from_n_evaluations{{{
445 template <typename _R, typename _Fp, size_t... _I>
446  [[__gnu__::__flatten__]] _GLIBCXX_SIMD_INTRINSIC constexpr
447  _R
448  __execute_on_index_sequence_with_return(_Fp&& __f, index_sequence<_I...>)
449  { return _R{__f(_SizeConstant<_I>())...}; }
450 
451 template <size_t _Np, typename _R, typename _Fp>
452  _GLIBCXX_SIMD_INTRINSIC constexpr _R
453  __generate_from_n_evaluations(_Fp&& __f)
454  {
455  return __execute_on_index_sequence_with_return<_R>(
456  static_cast<_Fp&&>(__f), make_index_sequence<_Np>{});
457  }
458 
459 // }}}
460 // __call_with_n_evaluations{{{
461 template <size_t... _I, typename _F0, typename _FArgs>
462  [[__gnu__::__flatten__]] _GLIBCXX_SIMD_INTRINSIC constexpr
463  auto
464  __call_with_n_evaluations(index_sequence<_I...>, _F0&& __f0, _FArgs&& __fargs)
465  { return __f0(__fargs(_SizeConstant<_I>())...); }
466 
467 template <size_t _Np, typename _F0, typename _FArgs>
468  _GLIBCXX_SIMD_INTRINSIC constexpr auto
469  __call_with_n_evaluations(_F0&& __f0, _FArgs&& __fargs)
470  {
471  return __call_with_n_evaluations(make_index_sequence<_Np>{},
472  static_cast<_F0&&>(__f0),
473  static_cast<_FArgs&&>(__fargs));
474  }
475 
476 // }}}
477 // __call_with_subscripts{{{
478 template <size_t _First = 0, size_t... _It, typename _Tp, typename _Fp>
479  [[__gnu__::__flatten__]] _GLIBCXX_SIMD_INTRINSIC constexpr
480  auto
481  __call_with_subscripts(_Tp&& __x, index_sequence<_It...>, _Fp&& __fun)
482  { return __fun(__x[_First + _It]...); }
483 
484 template <size_t _Np, size_t _First = 0, typename _Tp, typename _Fp>
485  _GLIBCXX_SIMD_INTRINSIC constexpr auto
486  __call_with_subscripts(_Tp&& __x, _Fp&& __fun)
487  {
488  return __call_with_subscripts<_First>(static_cast<_Tp&&>(__x),
489  make_index_sequence<_Np>(),
490  static_cast<_Fp&&>(__fun));
491  }
492 
493 // }}}
494 
495 // vvv ---- type traits ---- vvv
496 // integer type aliases{{{
497 using _UChar = unsigned char;
498 using _SChar = signed char;
499 using _UShort = unsigned short;
500 using _UInt = unsigned int;
501 using _ULong = unsigned long;
502 using _ULLong = unsigned long long;
503 using _LLong = long long;
504 
505 //}}}
506 // __first_of_pack{{{
507 template <typename _T0, typename...>
508  struct __first_of_pack
509  { using type = _T0; };
510 
511 template <typename... _Ts>
512  using __first_of_pack_t = typename __first_of_pack<_Ts...>::type;
513 
514 //}}}
515 // __value_type_or_identity_t {{{
516 template <typename _Tp>
517  typename _Tp::value_type
518  __value_type_or_identity_impl(int);
519 
520 template <typename _Tp>
521  _Tp
522  __value_type_or_identity_impl(float);
523 
524 template <typename _Tp>
525  using __value_type_or_identity_t
526  = decltype(__value_type_or_identity_impl<_Tp>(int()));
527 
528 // }}}
529 // __is_vectorizable {{{
530 template <typename _Tp>
531  struct __is_vectorizable : public is_arithmetic<_Tp> {};
532 
533 template <>
534  struct __is_vectorizable<bool> : public false_type {};
535 
536 template <typename _Tp>
537  inline constexpr bool __is_vectorizable_v = __is_vectorizable<_Tp>::value;
538 
539 // Deduces to a vectorizable type
540 template <typename _Tp, typename = enable_if_t<__is_vectorizable_v<_Tp>>>
541  using _Vectorizable = _Tp;
542 
543 // }}}
544 // _LoadStorePtr / __is_possible_loadstore_conversion {{{
545 template <typename _Ptr, typename _ValueType>
546  struct __is_possible_loadstore_conversion
547  : conjunction<__is_vectorizable<_Ptr>, __is_vectorizable<_ValueType>> {};
548 
549 template <>
550  struct __is_possible_loadstore_conversion<bool, bool> : true_type {};
551 
552 // Deduces to a type allowed for load/store with the given value type.
553 template <typename _Ptr, typename _ValueType,
554  typename = enable_if_t<
555  __is_possible_loadstore_conversion<_Ptr, _ValueType>::value>>
556  using _LoadStorePtr = _Ptr;
557 
558 // }}}
559 // __is_bitmask{{{
560 template <typename _Tp, typename = void_t<>>
561  struct __is_bitmask : false_type {};
562 
563 template <typename _Tp>
564  inline constexpr bool __is_bitmask_v = __is_bitmask<_Tp>::value;
565 
566 // the __mmaskXX case:
567 template <typename _Tp>
568  struct __is_bitmask<_Tp,
569  void_t<decltype(declval<unsigned&>() = declval<_Tp>() & 1u)>>
570  : true_type {};
571 
572 // }}}
573 // __int_for_sizeof{{{
574 #pragma GCC diagnostic push
575 #pragma GCC diagnostic ignored "-Wpedantic"
576 template <size_t _Bytes>
577  constexpr auto
578  __int_for_sizeof()
579  {
580  if constexpr (_Bytes == sizeof(int))
581  return int();
582  #ifdef __clang__
583  else if constexpr (_Bytes == sizeof(char))
584  return char();
585  #else
586  else if constexpr (_Bytes == sizeof(_SChar))
587  return _SChar();
588  #endif
589  else if constexpr (_Bytes == sizeof(short))
590  return short();
591  #ifndef __clang__
592  else if constexpr (_Bytes == sizeof(long))
593  return long();
594  #endif
595  else if constexpr (_Bytes == sizeof(_LLong))
596  return _LLong();
597  #ifdef __SIZEOF_INT128__
598  else if constexpr (_Bytes == sizeof(__int128))
599  return __int128();
600  #endif // __SIZEOF_INT128__
601  else if constexpr (_Bytes % sizeof(int) == 0)
602  {
603  constexpr size_t _Np = _Bytes / sizeof(int);
604  struct _Ip
605  {
606  int _M_data[_Np];
607 
608  _GLIBCXX_SIMD_INTRINSIC constexpr _Ip
609  operator&(_Ip __rhs) const
610  {
611  return __generate_from_n_evaluations<_Np, _Ip>(
612  [&](auto __i) { return __rhs._M_data[__i] & _M_data[__i]; });
613  }
614 
615  _GLIBCXX_SIMD_INTRINSIC constexpr _Ip
616  operator|(_Ip __rhs) const
617  {
618  return __generate_from_n_evaluations<_Np, _Ip>(
619  [&](auto __i) { return __rhs._M_data[__i] | _M_data[__i]; });
620  }
621 
622  _GLIBCXX_SIMD_INTRINSIC constexpr _Ip
623  operator^(_Ip __rhs) const
624  {
625  return __generate_from_n_evaluations<_Np, _Ip>(
626  [&](auto __i) { return __rhs._M_data[__i] ^ _M_data[__i]; });
627  }
628 
629  _GLIBCXX_SIMD_INTRINSIC constexpr _Ip
630  operator~() const
631  {
632  return __generate_from_n_evaluations<_Np, _Ip>(
633  [&](auto __i) { return ~_M_data[__i]; });
634  }
635  };
636  return _Ip{};
637  }
638  else
639  static_assert(_Bytes != _Bytes, "this should be unreachable");
640  }
641 #pragma GCC diagnostic pop
642 
643 template <typename _Tp>
644  using __int_for_sizeof_t = decltype(__int_for_sizeof<sizeof(_Tp)>());
645 
646 template <size_t _Np>
647  using __int_with_sizeof_t = decltype(__int_for_sizeof<_Np>());
648 
649 // }}}
650 // __is_fixed_size_abi{{{
651 template <typename _Tp>
652  struct __is_fixed_size_abi : false_type {};
653 
654 template <int _Np>
655  struct __is_fixed_size_abi<simd_abi::fixed_size<_Np>> : true_type {};
656 
657 template <typename _Tp>
658  inline constexpr bool __is_fixed_size_abi_v = __is_fixed_size_abi<_Tp>::value;
659 
660 // }}}
661 // __is_scalar_abi {{{
662 template <typename _Abi>
663  constexpr bool
664  __is_scalar_abi()
665  { return is_same_v<simd_abi::scalar, _Abi>; }
666 
667 // }}}
668 // __abi_bytes_v {{{
669 template <template <int> class _Abi, int _Bytes>
670  constexpr int
671  __abi_bytes_impl(_Abi<_Bytes>*)
672  { return _Bytes; }
673 
674 template <typename _Tp>
675  constexpr int
676  __abi_bytes_impl(_Tp*)
677  { return -1; }
678 
679 template <typename _Abi>
680  inline constexpr int __abi_bytes_v
681  = __abi_bytes_impl(static_cast<_Abi*>(nullptr));
682 
683 // }}}
684 // __is_builtin_bitmask_abi {{{
685 template <typename _Abi>
686  constexpr bool
687  __is_builtin_bitmask_abi()
688  { return is_same_v<simd_abi::_VecBltnBtmsk<__abi_bytes_v<_Abi>>, _Abi>; }
689 
690 // }}}
691 // __is_sse_abi {{{
692 template <typename _Abi>
693  constexpr bool
694  __is_sse_abi()
695  {
696  constexpr auto _Bytes = __abi_bytes_v<_Abi>;
697  return _Bytes <= 16 && is_same_v<simd_abi::_VecBuiltin<_Bytes>, _Abi>;
698  }
699 
700 // }}}
701 // __is_avx_abi {{{
702 template <typename _Abi>
703  constexpr bool
704  __is_avx_abi()
705  {
706  constexpr auto _Bytes = __abi_bytes_v<_Abi>;
707  return _Bytes > 16 && _Bytes <= 32
708  && is_same_v<simd_abi::_VecBuiltin<_Bytes>, _Abi>;
709  }
710 
711 // }}}
712 // __is_avx512_abi {{{
713 template <typename _Abi>
714  constexpr bool
715  __is_avx512_abi()
716  {
717  constexpr auto _Bytes = __abi_bytes_v<_Abi>;
718  return _Bytes <= 64 && is_same_v<simd_abi::_Avx512<_Bytes>, _Abi>;
719  }
720 
721 // }}}
722 // __is_neon_abi {{{
723 template <typename _Abi>
724  constexpr bool
725  __is_neon_abi()
726  {
727  constexpr auto _Bytes = __abi_bytes_v<_Abi>;
728  return _Bytes <= 16 && is_same_v<simd_abi::_VecBuiltin<_Bytes>, _Abi>;
729  }
730 
731 // }}}
732 // __make_dependent_t {{{
733 template <typename, typename _Up>
734  struct __make_dependent
735  { using type = _Up; };
736 
737 template <typename _Tp, typename _Up>
738  using __make_dependent_t = typename __make_dependent<_Tp, _Up>::type;
739 
740 // }}}
741 // ^^^ ---- type traits ---- ^^^
742 
743 // __invoke_ub{{{
744 template <typename... _Args>
745  [[noreturn]] _GLIBCXX_SIMD_ALWAYS_INLINE void
746  __invoke_ub([[maybe_unused]] const char* __msg,
747  [[maybe_unused]] const _Args&... __args)
748  {
749 #ifdef _GLIBCXX_DEBUG_UB
750  __builtin_fprintf(stderr, __msg, __args...);
751  __builtin_trap();
752 #else
753  __builtin_unreachable();
754 #endif
755  }
756 
757 // }}}
758 // __assert_unreachable{{{
759 template <typename _Tp>
760  struct __assert_unreachable
761  { static_assert(!is_same_v<_Tp, _Tp>, "this should be unreachable"); };
762 
763 // }}}
764 // __size_or_zero_v {{{
765 template <typename _Tp, typename _Ap, size_t _Np = simd_size<_Tp, _Ap>::value>
766  constexpr size_t
767  __size_or_zero_dispatch(int)
768  { return _Np; }
769 
770 template <typename _Tp, typename _Ap>
771  constexpr size_t
772  __size_or_zero_dispatch(float)
773  { return 0; }
774 
775 template <typename _Tp, typename _Ap>
776  inline constexpr size_t __size_or_zero_v
777  = __size_or_zero_dispatch<_Tp, _Ap>(0);
778 
779 // }}}
780 // __div_roundup {{{
781 inline constexpr size_t
782 __div_roundup(size_t __a, size_t __b)
783 { return (__a + __b - 1) / __b; }
784 
785 // }}}
786 // _ExactBool{{{
787 class _ExactBool
788 {
789  const bool _M_data;
790 
791 public:
792  _GLIBCXX_SIMD_INTRINSIC constexpr _ExactBool(bool __b) : _M_data(__b) {}
793 
794  _ExactBool(int) = delete;
795 
796  _GLIBCXX_SIMD_INTRINSIC constexpr operator bool() const { return _M_data; }
797 };
798 
799 // }}}
800 // __may_alias{{{
801 /**@internal
802  * Helper __may_alias<_Tp> that turns _Tp into the type to be used for an
803  * aliasing pointer. This adds the __may_alias attribute to _Tp (with compilers
804  * that support it).
805  */
806 template <typename _Tp>
807  using __may_alias [[__gnu__::__may_alias__]] = _Tp;
808 
809 // }}}
810 // _UnsupportedBase {{{
811 // simd and simd_mask base for unsupported <_Tp, _Abi>
812 struct _UnsupportedBase
813 {
814  _UnsupportedBase() = delete;
815  _UnsupportedBase(const _UnsupportedBase&) = delete;
816  _UnsupportedBase& operator=(const _UnsupportedBase&) = delete;
817  ~_UnsupportedBase() = delete;
818 };
819 
820 // }}}
821 // _InvalidTraits {{{
822 /**
823  * @internal
824  * Defines the implementation of __a given <_Tp, _Abi>.
825  *
826  * Implementations must ensure that only valid <_Tp, _Abi> instantiations are
827  * possible. Static assertions in the type definition do not suffice. It is
828  * important that SFINAE works.
829  */
830 struct _InvalidTraits
831 {
832  using _IsValid = false_type;
833  using _SimdBase = _UnsupportedBase;
834  using _MaskBase = _UnsupportedBase;
835 
836  static constexpr size_t _S_full_size = 0;
837  static constexpr bool _S_is_partial = false;
838 
839  static constexpr size_t _S_simd_align = 1;
840  struct _SimdImpl;
841  struct _SimdMember {};
842  struct _SimdCastType;
843 
844  static constexpr size_t _S_mask_align = 1;
845  struct _MaskImpl;
846  struct _MaskMember {};
847  struct _MaskCastType;
848 };
849 
850 // }}}
851 // _SimdTraits {{{
852 template <typename _Tp, typename _Abi, typename = void_t<>>
853  struct _SimdTraits : _InvalidTraits {};
854 
855 // }}}
856 // __private_init, __bitset_init{{{
857 /**
858  * @internal
859  * Tag used for private init constructor of simd and simd_mask
860  */
861 inline constexpr struct _PrivateInit {} __private_init = {};
862 
863 inline constexpr struct _BitsetInit {} __bitset_init = {};
864 
865 // }}}
866 // __is_narrowing_conversion<_From, _To>{{{
867 template <typename _From, typename _To, bool = is_arithmetic_v<_From>,
868  bool = is_arithmetic_v<_To>>
869  struct __is_narrowing_conversion;
870 
871 // ignore "signed/unsigned mismatch" in the following trait.
872 // The implicit conversions will do the right thing here.
873 template <typename _From, typename _To>
874  struct __is_narrowing_conversion<_From, _To, true, true>
875  : public __bool_constant<(
876  __digits_v<_From> > __digits_v<_To>
877  || __finite_max_v<_From> > __finite_max_v<_To>
878  || __finite_min_v<_From> < __finite_min_v<_To>
879  || (is_signed_v<_From> && is_unsigned_v<_To>))> {};
880 
881 template <typename _Tp>
882  struct __is_narrowing_conversion<_Tp, bool, true, true>
883  : public true_type {};
884 
885 template <>
886  struct __is_narrowing_conversion<bool, bool, true, true>
887  : public false_type {};
888 
889 template <typename _Tp>
890  struct __is_narrowing_conversion<_Tp, _Tp, true, true>
891  : public false_type {};
892 
893 template <typename _From, typename _To>
894  struct __is_narrowing_conversion<_From, _To, false, true>
895  : public negation<is_convertible<_From, _To>> {};
896 
897 // }}}
898 // __converts_to_higher_integer_rank{{{
899 template <typename _From, typename _To, bool = (sizeof(_From) < sizeof(_To))>
900  struct __converts_to_higher_integer_rank : public true_type {};
901 
902 // this may fail for char -> short if sizeof(char) == sizeof(short)
903 template <typename _From, typename _To>
904  struct __converts_to_higher_integer_rank<_From, _To, false>
905  : public is_same<decltype(declval<_From>() + declval<_To>()), _To> {};
906 
907 // }}}
908 // __data(simd/simd_mask) {{{
909 template <typename _Tp, typename _Ap>
910  _GLIBCXX_SIMD_INTRINSIC constexpr const auto&
911  __data(const simd<_Tp, _Ap>& __x);
912 
913 template <typename _Tp, typename _Ap>
914  _GLIBCXX_SIMD_INTRINSIC constexpr auto&
915  __data(simd<_Tp, _Ap>& __x);
916 
917 template <typename _Tp, typename _Ap>
918  _GLIBCXX_SIMD_INTRINSIC constexpr const auto&
919  __data(const simd_mask<_Tp, _Ap>& __x);
920 
921 template <typename _Tp, typename _Ap>
922  _GLIBCXX_SIMD_INTRINSIC constexpr auto&
923  __data(simd_mask<_Tp, _Ap>& __x);
924 
925 // }}}
926 // _SimdConverter {{{
927 template <typename _FromT, typename _FromA, typename _ToT, typename _ToA,
928  typename = void>
929  struct _SimdConverter;
930 
931 template <typename _Tp, typename _Ap>
932  struct _SimdConverter<_Tp, _Ap, _Tp, _Ap, void>
933  {
934  template <typename _Up>
935  _GLIBCXX_SIMD_INTRINSIC const _Up&
936  operator()(const _Up& __x)
937  { return __x; }
938  };
939 
940 // }}}
941 // __to_value_type_or_member_type {{{
942 template <typename _V>
943  _GLIBCXX_SIMD_INTRINSIC constexpr auto
944  __to_value_type_or_member_type(const _V& __x) -> decltype(__data(__x))
945  { return __data(__x); }
946 
947 template <typename _V>
948  _GLIBCXX_SIMD_INTRINSIC constexpr const typename _V::value_type&
949  __to_value_type_or_member_type(const typename _V::value_type& __x)
950  { return __x; }
951 
952 // }}}
953 // __bool_storage_member_type{{{
954 template <size_t _Size>
955  struct __bool_storage_member_type;
956 
957 template <size_t _Size>
958  using __bool_storage_member_type_t =
959  typename __bool_storage_member_type<_Size>::type;
960 
961 // }}}
962 // _SimdTuple {{{
963 // why not tuple?
964 // 1. tuple gives no guarantee about the storage order, but I require
965 // storage
966 // equivalent to array<_Tp, _Np>
967 // 2. direct access to the element type (first template argument)
968 // 3. enforces equal element type, only different _Abi types are allowed
969 template <typename _Tp, typename... _Abis>
970  struct _SimdTuple;
971 
972 //}}}
973 // __fixed_size_storage_t {{{
974 template <typename _Tp, int _Np>
975  struct __fixed_size_storage;
976 
977 template <typename _Tp, int _Np>
978  using __fixed_size_storage_t = typename __fixed_size_storage<_Tp, _Np>::type;
979 
980 // }}}
981 // _SimdWrapper fwd decl{{{
982 template <typename _Tp, size_t _Size, typename = void_t<>>
983  struct _SimdWrapper;
984 
985 template <typename _Tp>
986  using _SimdWrapper8 = _SimdWrapper<_Tp, 8 / sizeof(_Tp)>;
987 template <typename _Tp>
988  using _SimdWrapper16 = _SimdWrapper<_Tp, 16 / sizeof(_Tp)>;
989 template <typename _Tp>
990  using _SimdWrapper32 = _SimdWrapper<_Tp, 32 / sizeof(_Tp)>;
991 template <typename _Tp>
992  using _SimdWrapper64 = _SimdWrapper<_Tp, 64 / sizeof(_Tp)>;
993 
994 // }}}
995 // __is_simd_wrapper {{{
996 template <typename _Tp>
997  struct __is_simd_wrapper : false_type {};
998 
999 template <typename _Tp, size_t _Np>
1000  struct __is_simd_wrapper<_SimdWrapper<_Tp, _Np>> : true_type {};
1001 
1002 template <typename _Tp>
1003  inline constexpr bool __is_simd_wrapper_v = __is_simd_wrapper<_Tp>::value;
1004 
1005 // }}}
1006 // _BitOps {{{
1007 struct _BitOps
1008 {
1009  // _S_bit_iteration {{{
1010  template <typename _Tp, typename _Fp>
1011  static void
1012  _S_bit_iteration(_Tp __mask, _Fp&& __f)
1013  {
1014  static_assert(sizeof(_ULLong) >= sizeof(_Tp));
1015  conditional_t<sizeof(_Tp) <= sizeof(_UInt), _UInt, _ULLong> __k;
1016  if constexpr (is_convertible_v<_Tp, decltype(__k)>)
1017  __k = __mask;
1018  else
1019  __k = __mask.to_ullong();
1020  while(__k)
1021  {
1022  __f(std::__countr_zero(__k));
1023  __k &= (__k - 1);
1024  }
1025  }
1026 
1027  //}}}
1028 };
1029 
1030 //}}}
1031 // __increment, __decrement {{{
1032 template <typename _Tp = void>
1033  struct __increment
1034  { constexpr _Tp operator()(_Tp __a) const { return ++__a; } };
1035 
1036 template <>
1037  struct __increment<void>
1038  {
1039  template <typename _Tp>
1040  constexpr _Tp
1041  operator()(_Tp __a) const
1042  { return ++__a; }
1043  };
1044 
1045 template <typename _Tp = void>
1046  struct __decrement
1047  { constexpr _Tp operator()(_Tp __a) const { return --__a; } };
1048 
1049 template <>
1050  struct __decrement<void>
1051  {
1052  template <typename _Tp>
1053  constexpr _Tp
1054  operator()(_Tp __a) const
1055  { return --__a; }
1056  };
1057 
1058 // }}}
1059 // _ValuePreserving(OrInt) {{{
1060 template <typename _From, typename _To,
1061  typename = enable_if_t<negation<
1062  __is_narrowing_conversion<__remove_cvref_t<_From>, _To>>::value>>
1063  using _ValuePreserving = _From;
1064 
1065 template <typename _From, typename _To,
1066  typename _DecayedFrom = __remove_cvref_t<_From>,
1067  typename = enable_if_t<conjunction<
1068  is_convertible<_From, _To>,
1069  disjunction<
1070  is_same<_DecayedFrom, _To>, is_same<_DecayedFrom, int>,
1071  conjunction<is_same<_DecayedFrom, _UInt>, is_unsigned<_To>>,
1072  negation<__is_narrowing_conversion<_DecayedFrom, _To>>>>::value>>
1073  using _ValuePreservingOrInt = _From;
1074 
1075 // }}}
1076 // __intrinsic_type {{{
1077 template <typename _Tp, size_t _Bytes, typename = void_t<>>
1078  struct __intrinsic_type;
1079 
1080 template <typename _Tp, size_t _Size>
1081  using __intrinsic_type_t =
1082  typename __intrinsic_type<_Tp, _Size * sizeof(_Tp)>::type;
1083 
1084 template <typename _Tp>
1085  using __intrinsic_type2_t = typename __intrinsic_type<_Tp, 2>::type;
1086 template <typename _Tp>
1087  using __intrinsic_type4_t = typename __intrinsic_type<_Tp, 4>::type;
1088 template <typename _Tp>
1089  using __intrinsic_type8_t = typename __intrinsic_type<_Tp, 8>::type;
1090 template <typename _Tp>
1091  using __intrinsic_type16_t = typename __intrinsic_type<_Tp, 16>::type;
1092 template <typename _Tp>
1093  using __intrinsic_type32_t = typename __intrinsic_type<_Tp, 32>::type;
1094 template <typename _Tp>
1095  using __intrinsic_type64_t = typename __intrinsic_type<_Tp, 64>::type;
1096 
1097 // }}}
1098 // _BitMask {{{
1099 template <size_t _Np, bool _Sanitized = false>
1100  struct _BitMask;
1101 
1102 template <size_t _Np, bool _Sanitized>
1103  struct __is_bitmask<_BitMask<_Np, _Sanitized>, void> : true_type {};
1104 
1105 template <size_t _Np>
1106  using _SanitizedBitMask = _BitMask<_Np, true>;
1107 
1108 template <size_t _Np, bool _Sanitized>
1109  struct _BitMask
1110  {
1111  static_assert(_Np > 0);
1112 
1113  static constexpr size_t _NBytes = __div_roundup(_Np, __CHAR_BIT__);
1114 
1115  using _Tp = conditional_t<_Np == 1, bool,
1116  make_unsigned_t<__int_with_sizeof_t<std::min(
1117  sizeof(_ULLong), std::__bit_ceil(_NBytes))>>>;
1118 
1119  static constexpr int _S_array_size = __div_roundup(_NBytes, sizeof(_Tp));
1120 
1121  _Tp _M_bits[_S_array_size];
1122 
1123  static constexpr int _S_unused_bits
1124  = _Np == 1 ? 0 : _S_array_size * sizeof(_Tp) * __CHAR_BIT__ - _Np;
1125 
1126  static constexpr _Tp _S_bitmask = +_Tp(~_Tp()) >> _S_unused_bits;
1127 
1128  constexpr _BitMask() noexcept = default;
1129 
1130  constexpr _BitMask(unsigned long long __x) noexcept
1131  : _M_bits{static_cast<_Tp>(__x)} {}
1132 
1133  _BitMask(bitset<_Np> __x) noexcept : _BitMask(__x.to_ullong()) {}
1134 
1135  constexpr _BitMask(const _BitMask&) noexcept = default;
1136 
1137  template <bool _RhsSanitized, typename = enable_if_t<_RhsSanitized == false
1138  && _Sanitized == true>>
1139  constexpr _BitMask(const _BitMask<_Np, _RhsSanitized>& __rhs) noexcept
1140  : _BitMask(__rhs._M_sanitized()) {}
1141 
1142  constexpr operator _SimdWrapper<bool, _Np>() const noexcept
1143  {
1144  static_assert(_S_array_size == 1);
1145  return _M_bits[0];
1146  }
1147 
1148  // precondition: is sanitized
1149  constexpr _Tp
1150  _M_to_bits() const noexcept
1151  {
1152  static_assert(_S_array_size == 1);
1153  return _M_bits[0];
1154  }
1155 
1156  // precondition: is sanitized
1157  constexpr unsigned long long
1158  to_ullong() const noexcept
1159  {
1160  static_assert(_S_array_size == 1);
1161  return _M_bits[0];
1162  }
1163 
1164  // precondition: is sanitized
1165  constexpr unsigned long
1166  to_ulong() const noexcept
1167  {
1168  static_assert(_S_array_size == 1);
1169  return _M_bits[0];
1170  }
1171 
1172  constexpr bitset<_Np>
1173  _M_to_bitset() const noexcept
1174  {
1175  static_assert(_S_array_size == 1);
1176  return _M_bits[0];
1177  }
1178 
1179  constexpr decltype(auto)
1180  _M_sanitized() const noexcept
1181  {
1182  if constexpr (_Sanitized)
1183  return *this;
1184  else if constexpr (_Np == 1)
1185  return _SanitizedBitMask<_Np>(_M_bits[0]);
1186  else
1187  {
1188  _SanitizedBitMask<_Np> __r = {};
1189  for (int __i = 0; __i < _S_array_size; ++__i)
1190  __r._M_bits[__i] = _M_bits[__i];
1191  if constexpr (_S_unused_bits > 0)
1192  __r._M_bits[_S_array_size - 1] &= _S_bitmask;
1193  return __r;
1194  }
1195  }
1196 
1197  template <size_t _Mp, bool _LSanitized>
1198  constexpr _BitMask<_Np + _Mp, _Sanitized>
1199  _M_prepend(_BitMask<_Mp, _LSanitized> __lsb) const noexcept
1200  {
1201  constexpr size_t _RN = _Np + _Mp;
1202  using _Rp = _BitMask<_RN, _Sanitized>;
1203  if constexpr (_Rp::_S_array_size == 1)
1204  {
1205  _Rp __r{{_M_bits[0]}};
1206  __r._M_bits[0] <<= _Mp;
1207  __r._M_bits[0] |= __lsb._M_sanitized()._M_bits[0];
1208  return __r;
1209  }
1210  else
1211  __assert_unreachable<_Rp>();
1212  }
1213 
1214  // Return a new _BitMask with size _NewSize while dropping _DropLsb least
1215  // significant bits. If the operation implicitly produces a sanitized bitmask,
1216  // the result type will have _Sanitized set.
1217  template <size_t _DropLsb, size_t _NewSize = _Np - _DropLsb>
1218  constexpr auto
1219  _M_extract() const noexcept
1220  {
1221  static_assert(_Np > _DropLsb);
1222  static_assert(_DropLsb + _NewSize <= sizeof(_ULLong) * __CHAR_BIT__,
1223  "not implemented for bitmasks larger than one ullong");
1224  if constexpr (_NewSize == 1)
1225  // must sanitize because the return _Tp is bool
1226  return _SanitizedBitMask<1>(_M_bits[0] & (_Tp(1) << _DropLsb));
1227  else
1228  return _BitMask<_NewSize,
1229  ((_NewSize + _DropLsb == sizeof(_Tp) * __CHAR_BIT__
1230  && _NewSize + _DropLsb <= _Np)
1231  || ((_Sanitized || _Np == sizeof(_Tp) * __CHAR_BIT__)
1232  && _NewSize + _DropLsb >= _Np))>(_M_bits[0]
1233  >> _DropLsb);
1234  }
1235 
1236  // True if all bits are set. Implicitly sanitizes if _Sanitized == false.
1237  constexpr bool
1238  all() const noexcept
1239  {
1240  if constexpr (_Np == 1)
1241  return _M_bits[0];
1242  else if constexpr (!_Sanitized)
1243  return _M_sanitized().all();
1244  else
1245  {
1246  constexpr _Tp __allbits = ~_Tp();
1247  for (int __i = 0; __i < _S_array_size - 1; ++__i)
1248  if (_M_bits[__i] != __allbits)
1249  return false;
1250  return _M_bits[_S_array_size - 1] == _S_bitmask;
1251  }
1252  }
1253 
1254  // True if at least one bit is set. Implicitly sanitizes if _Sanitized ==
1255  // false.
1256  constexpr bool
1257  any() const noexcept
1258  {
1259  if constexpr (_Np == 1)
1260  return _M_bits[0];
1261  else if constexpr (!_Sanitized)
1262  return _M_sanitized().any();
1263  else
1264  {
1265  for (int __i = 0; __i < _S_array_size - 1; ++__i)
1266  if (_M_bits[__i] != 0)
1267  return true;
1268  return _M_bits[_S_array_size - 1] != 0;
1269  }
1270  }
1271 
1272  // True if no bit is set. Implicitly sanitizes if _Sanitized == false.
1273  constexpr bool
1274  none() const noexcept
1275  {
1276  if constexpr (_Np == 1)
1277  return !_M_bits[0];
1278  else if constexpr (!_Sanitized)
1279  return _M_sanitized().none();
1280  else
1281  {
1282  for (int __i = 0; __i < _S_array_size - 1; ++__i)
1283  if (_M_bits[__i] != 0)
1284  return false;
1285  return _M_bits[_S_array_size - 1] == 0;
1286  }
1287  }
1288 
1289  // Returns the number of set bits. Implicitly sanitizes if _Sanitized ==
1290  // false.
1291  constexpr int
1292  count() const noexcept
1293  {
1294  if constexpr (_Np == 1)
1295  return _M_bits[0];
1296  else if constexpr (!_Sanitized)
1297  return _M_sanitized().none();
1298  else
1299  {
1300  int __result = __builtin_popcountll(_M_bits[0]);
1301  for (int __i = 1; __i < _S_array_size; ++__i)
1302  __result += __builtin_popcountll(_M_bits[__i]);
1303  return __result;
1304  }
1305  }
1306 
1307  // Returns the bit at offset __i as bool.
1308  constexpr bool
1309  operator[](size_t __i) const noexcept
1310  {
1311  if constexpr (_Np == 1)
1312  return _M_bits[0];
1313  else if constexpr (_S_array_size == 1)
1314  return (_M_bits[0] >> __i) & 1;
1315  else
1316  {
1317  const size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__);
1318  const size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__);
1319  return (_M_bits[__j] >> __shift) & 1;
1320  }
1321  }
1322 
1323  template <size_t __i>
1324  constexpr bool
1325  operator[](_SizeConstant<__i>) const noexcept
1326  {
1327  static_assert(__i < _Np);
1328  constexpr size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__);
1329  constexpr size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__);
1330  return static_cast<bool>(_M_bits[__j] & (_Tp(1) << __shift));
1331  }
1332 
1333  // Set the bit at offset __i to __x.
1334  constexpr void
1335  set(size_t __i, bool __x) noexcept
1336  {
1337  if constexpr (_Np == 1)
1338  _M_bits[0] = __x;
1339  else if constexpr (_S_array_size == 1)
1340  {
1341  _M_bits[0] &= ~_Tp(_Tp(1) << __i);
1342  _M_bits[0] |= _Tp(_Tp(__x) << __i);
1343  }
1344  else
1345  {
1346  const size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__);
1347  const size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__);
1348  _M_bits[__j] &= ~_Tp(_Tp(1) << __shift);
1349  _M_bits[__j] |= _Tp(_Tp(__x) << __shift);
1350  }
1351  }
1352 
1353  template <size_t __i>
1354  constexpr void
1355  set(_SizeConstant<__i>, bool __x) noexcept
1356  {
1357  static_assert(__i < _Np);
1358  if constexpr (_Np == 1)
1359  _M_bits[0] = __x;
1360  else
1361  {
1362  constexpr size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__);
1363  constexpr size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__);
1364  constexpr _Tp __mask = ~_Tp(_Tp(1) << __shift);
1365  _M_bits[__j] &= __mask;
1366  _M_bits[__j] |= _Tp(_Tp(__x) << __shift);
1367  }
1368  }
1369 
1370  // Inverts all bits. Sanitized input leads to sanitized output.
1371  constexpr _BitMask
1372  operator~() const noexcept
1373  {
1374  if constexpr (_Np == 1)
1375  return !_M_bits[0];
1376  else
1377  {
1378  _BitMask __result{};
1379  for (int __i = 0; __i < _S_array_size - 1; ++__i)
1380  __result._M_bits[__i] = ~_M_bits[__i];
1381  if constexpr (_Sanitized)
1382  __result._M_bits[_S_array_size - 1]
1383  = _M_bits[_S_array_size - 1] ^ _S_bitmask;
1384  else
1385  __result._M_bits[_S_array_size - 1] = ~_M_bits[_S_array_size - 1];
1386  return __result;
1387  }
1388  }
1389 
1390  constexpr _BitMask&
1391  operator^=(const _BitMask& __b) & noexcept
1392  {
1393  __execute_n_times<_S_array_size>(
1394  [&](auto __i) { _M_bits[__i] ^= __b._M_bits[__i]; });
1395  return *this;
1396  }
1397 
1398  constexpr _BitMask&
1399  operator|=(const _BitMask& __b) & noexcept
1400  {
1401  __execute_n_times<_S_array_size>(
1402  [&](auto __i) { _M_bits[__i] |= __b._M_bits[__i]; });
1403  return *this;
1404  }
1405 
1406  constexpr _BitMask&
1407  operator&=(const _BitMask& __b) & noexcept
1408  {
1409  __execute_n_times<_S_array_size>(
1410  [&](auto __i) { _M_bits[__i] &= __b._M_bits[__i]; });
1411  return *this;
1412  }
1413 
1414  friend constexpr _BitMask
1415  operator^(const _BitMask& __a, const _BitMask& __b) noexcept
1416  {
1417  _BitMask __r = __a;
1418  __r ^= __b;
1419  return __r;
1420  }
1421 
1422  friend constexpr _BitMask
1423  operator|(const _BitMask& __a, const _BitMask& __b) noexcept
1424  {
1425  _BitMask __r = __a;
1426  __r |= __b;
1427  return __r;
1428  }
1429 
1430  friend constexpr _BitMask
1431  operator&(const _BitMask& __a, const _BitMask& __b) noexcept
1432  {
1433  _BitMask __r = __a;
1434  __r &= __b;
1435  return __r;
1436  }
1437 
1438  _GLIBCXX_SIMD_INTRINSIC
1439  constexpr bool
1440  _M_is_constprop() const
1441  {
1442  if constexpr (_S_array_size == 0)
1443  return __builtin_constant_p(_M_bits[0]);
1444  else
1445  {
1446  for (int __i = 0; __i < _S_array_size; ++__i)
1447  if (!__builtin_constant_p(_M_bits[__i]))
1448  return false;
1449  return true;
1450  }
1451  }
1452  };
1453 
1454 // }}}
1455 
1456 // vvv ---- builtin vector types [[gnu::vector_size(N)]] and operations ---- vvv
1457 // __min_vector_size {{{
1458 template <typename _Tp = void>
1459  static inline constexpr int __min_vector_size = 2 * sizeof(_Tp);
1460 
1461 #if _GLIBCXX_SIMD_HAVE_NEON
1462 template <>
1463  inline constexpr int __min_vector_size<void> = 8;
1464 #else
1465 template <>
1466  inline constexpr int __min_vector_size<void> = 16;
1467 #endif
1468 
1469 // }}}
1470 // __vector_type {{{
1471 template <typename _Tp, size_t _Np, typename = void>
1472  struct __vector_type_n {};
1473 
1474 // substition failure for 0-element case
1475 template <typename _Tp>
1476  struct __vector_type_n<_Tp, 0, void> {};
1477 
1478 // special case 1-element to be _Tp itself
1479 template <typename _Tp>
1480  struct __vector_type_n<_Tp, 1, enable_if_t<__is_vectorizable_v<_Tp>>>
1481  { using type = _Tp; };
1482 
1483 // else, use GNU-style builtin vector types
1484 template <typename _Tp, size_t _Np>
1485  struct __vector_type_n<_Tp, _Np,
1486  enable_if_t<__is_vectorizable_v<_Tp> && _Np >= 2>>
1487  {
1488  static constexpr size_t _S_Np2 = std::__bit_ceil(_Np * sizeof(_Tp));
1489 
1490  static constexpr size_t _S_Bytes =
1491 #ifdef __i386__
1492  // Using [[gnu::vector_size(8)]] would wreak havoc on the FPU because
1493  // those objects are passed via MMX registers and nothing ever calls EMMS.
1494  _S_Np2 == 8 ? 16 :
1495 #endif
1496  _S_Np2 < __min_vector_size<_Tp> ? __min_vector_size<_Tp>
1497  : _S_Np2;
1498 
1499  using type [[__gnu__::__vector_size__(_S_Bytes)]] = _Tp;
1500  };
1501 
1502 template <typename _Tp, size_t _Bytes, size_t = _Bytes % sizeof(_Tp)>
1503  struct __vector_type;
1504 
1505 template <typename _Tp, size_t _Bytes>
1506  struct __vector_type<_Tp, _Bytes, 0>
1507  : __vector_type_n<_Tp, _Bytes / sizeof(_Tp)> {};
1508 
1509 template <typename _Tp, size_t _Size>
1510  using __vector_type_t = typename __vector_type_n<_Tp, _Size>::type;
1511 
1512 template <typename _Tp>
1513  using __vector_type2_t = typename __vector_type<_Tp, 2>::type;
1514 template <typename _Tp>
1515  using __vector_type4_t = typename __vector_type<_Tp, 4>::type;
1516 template <typename _Tp>
1517  using __vector_type8_t = typename __vector_type<_Tp, 8>::type;
1518 template <typename _Tp>
1519  using __vector_type16_t = typename __vector_type<_Tp, 16>::type;
1520 template <typename _Tp>
1521  using __vector_type32_t = typename __vector_type<_Tp, 32>::type;
1522 template <typename _Tp>
1523  using __vector_type64_t = typename __vector_type<_Tp, 64>::type;
1524 
1525 // }}}
1526 // __is_vector_type {{{
1527 template <typename _Tp, typename = void_t<>>
1528  struct __is_vector_type : false_type {};
1529 
1530 template <typename _Tp>
1531  struct __is_vector_type<
1532  _Tp, void_t<typename __vector_type<
1533  remove_reference_t<decltype(declval<_Tp>()[0])>, sizeof(_Tp)>::type>>
1534  : is_same<_Tp, typename __vector_type<
1535  remove_reference_t<decltype(declval<_Tp>()[0])>,
1536  sizeof(_Tp)>::type> {};
1537 
1538 template <typename _Tp>
1539  inline constexpr bool __is_vector_type_v = __is_vector_type<_Tp>::value;
1540 
1541 // }}}
1542 // __is_intrinsic_type {{{
1543 #if _GLIBCXX_SIMD_HAVE_SSE_ABI
1544 template <typename _Tp>
1545  using __is_intrinsic_type = __is_vector_type<_Tp>;
1546 #else // not SSE (x86)
1547 template <typename _Tp, typename = void_t<>>
1548  struct __is_intrinsic_type : false_type {};
1549 
1550 template <typename _Tp>
1551  struct __is_intrinsic_type<
1552  _Tp, void_t<typename __intrinsic_type<
1553  remove_reference_t<decltype(declval<_Tp>()[0])>, sizeof(_Tp)>::type>>
1554  : is_same<_Tp, typename __intrinsic_type<
1555  remove_reference_t<decltype(declval<_Tp>()[0])>,
1556  sizeof(_Tp)>::type> {};
1557 #endif
1558 
1559 template <typename _Tp>
1560  inline constexpr bool __is_intrinsic_type_v = __is_intrinsic_type<_Tp>::value;
1561 
1562 // }}}
1563 // _VectorTraits{{{
1564 template <typename _Tp, typename = void_t<>>
1565  struct _VectorTraitsImpl;
1566 
1567 template <typename _Tp>
1568  struct _VectorTraitsImpl<_Tp, enable_if_t<__is_vector_type_v<_Tp>
1569  || __is_intrinsic_type_v<_Tp>>>
1570  {
1571  using type = _Tp;
1572  using value_type = remove_reference_t<decltype(declval<_Tp>()[0])>;
1573  static constexpr int _S_full_size = sizeof(_Tp) / sizeof(value_type);
1574  using _Wrapper = _SimdWrapper<value_type, _S_full_size>;
1575  template <typename _Up, int _W = _S_full_size>
1576  static constexpr bool _S_is
1577  = is_same_v<value_type, _Up> && _W == _S_full_size;
1578  };
1579 
1580 template <typename _Tp, size_t _Np>
1581  struct _VectorTraitsImpl<_SimdWrapper<_Tp, _Np>,
1582  void_t<__vector_type_t<_Tp, _Np>>>
1583  {
1584  using type = __vector_type_t<_Tp, _Np>;
1585  using value_type = _Tp;
1586  static constexpr int _S_full_size = sizeof(type) / sizeof(value_type);
1587  using _Wrapper = _SimdWrapper<_Tp, _Np>;
1588  static constexpr bool _S_is_partial = (_Np == _S_full_size);
1589  static constexpr int _S_partial_width = _Np;
1590  template <typename _Up, int _W = _S_full_size>
1591  static constexpr bool _S_is
1592  = is_same_v<value_type, _Up>&& _W == _S_full_size;
1593  };
1594 
1595 template <typename _Tp, typename = typename _VectorTraitsImpl<_Tp>::type>
1596  using _VectorTraits = _VectorTraitsImpl<_Tp>;
1597 
1598 // }}}
1599 // __as_vector{{{
1600 template <typename _V>
1601  _GLIBCXX_SIMD_INTRINSIC constexpr auto
1602  __as_vector(_V __x)
1603  {
1604  if constexpr (__is_vector_type_v<_V>)
1605  return __x;
1606  else if constexpr (is_simd<_V>::value || is_simd_mask<_V>::value)
1607  return __data(__x)._M_data;
1608  else if constexpr (__is_vectorizable_v<_V>)
1609  return __vector_type_t<_V, 2>{__x};
1610  else
1611  return __x._M_data;
1612  }
1613 
1614 // }}}
1615 // __as_wrapper{{{
1616 template <size_t _Np = 0, typename _V>
1617  _GLIBCXX_SIMD_INTRINSIC constexpr auto
1618  __as_wrapper(_V __x)
1619  {
1620  if constexpr (__is_vector_type_v<_V>)
1621  return _SimdWrapper<typename _VectorTraits<_V>::value_type,
1622  (_Np > 0 ? _Np : _VectorTraits<_V>::_S_full_size)>(__x);
1623  else if constexpr (is_simd<_V>::value || is_simd_mask<_V>::value)
1624  {
1625  static_assert(_V::size() == _Np);
1626  return __data(__x);
1627  }
1628  else
1629  {
1630  static_assert(_V::_S_size == _Np);
1631  return __x;
1632  }
1633  }
1634 
1635 // }}}
1636 // __intrin_bitcast{{{
1637 template <typename _To, typename _From>
1638  _GLIBCXX_SIMD_INTRINSIC constexpr _To
1639  __intrin_bitcast(_From __v)
1640  {
1641  static_assert((__is_vector_type_v<_From> || __is_intrinsic_type_v<_From>)
1642  && (__is_vector_type_v<_To> || __is_intrinsic_type_v<_To>));
1643  if constexpr (sizeof(_To) == sizeof(_From))
1644  return reinterpret_cast<_To>(__v);
1645  else if constexpr (sizeof(_From) > sizeof(_To))
1646  if constexpr (sizeof(_To) >= 16)
1647  return reinterpret_cast<const __may_alias<_To>&>(__v);
1648  else
1649  {
1650  _To __r;
1651  __builtin_memcpy(&__r, &__v, sizeof(_To));
1652  return __r;
1653  }
1654 #if _GLIBCXX_SIMD_X86INTRIN && !defined __clang__
1655  else if constexpr (__have_avx && sizeof(_From) == 16 && sizeof(_To) == 32)
1656  return reinterpret_cast<_To>(__builtin_ia32_ps256_ps(
1657  reinterpret_cast<__vector_type_t<float, 4>>(__v)));
1658  else if constexpr (__have_avx512f && sizeof(_From) == 16
1659  && sizeof(_To) == 64)
1660  return reinterpret_cast<_To>(__builtin_ia32_ps512_ps(
1661  reinterpret_cast<__vector_type_t<float, 4>>(__v)));
1662  else if constexpr (__have_avx512f && sizeof(_From) == 32
1663  && sizeof(_To) == 64)
1664  return reinterpret_cast<_To>(__builtin_ia32_ps512_256ps(
1665  reinterpret_cast<__vector_type_t<float, 8>>(__v)));
1666 #endif // _GLIBCXX_SIMD_X86INTRIN
1667  else if constexpr (sizeof(__v) <= 8)
1668  return reinterpret_cast<_To>(
1669  __vector_type_t<__int_for_sizeof_t<_From>, sizeof(_To) / sizeof(_From)>{
1670  reinterpret_cast<__int_for_sizeof_t<_From>>(__v)});
1671  else
1672  {
1673  static_assert(sizeof(_To) > sizeof(_From));
1674  _To __r = {};
1675  __builtin_memcpy(&__r, &__v, sizeof(_From));
1676  return __r;
1677  }
1678  }
1679 
1680 // }}}
1681 // __vector_bitcast{{{
1682 template <typename _To, size_t _NN = 0, typename _From,
1683  typename _FromVT = _VectorTraits<_From>,
1684  size_t _Np = _NN == 0 ? sizeof(_From) / sizeof(_To) : _NN>
1685  _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_To, _Np>
1686  __vector_bitcast(_From __x)
1687  {
1688  using _R = __vector_type_t<_To, _Np>;
1689  return __intrin_bitcast<_R>(__x);
1690  }
1691 
1692 template <typename _To, size_t _NN = 0, typename _Tp, size_t _Nx,
1693  size_t _Np
1694  = _NN == 0 ? sizeof(_SimdWrapper<_Tp, _Nx>) / sizeof(_To) : _NN>
1695  _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_To, _Np>
1696  __vector_bitcast(const _SimdWrapper<_Tp, _Nx>& __x)
1697  {
1698  static_assert(_Np > 1);
1699  return __intrin_bitcast<__vector_type_t<_To, _Np>>(__x._M_data);
1700  }
1701 
1702 // }}}
1703 // __convert_x86 declarations {{{
1704 #ifdef _GLIBCXX_SIMD_WORKAROUND_PR85048
1705 template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
1706  _To __convert_x86(_Tp);
1707 
1708 template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
1709  _To __convert_x86(_Tp, _Tp);
1710 
1711 template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
1712  _To __convert_x86(_Tp, _Tp, _Tp, _Tp);
1713 
1714 template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
1715  _To __convert_x86(_Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp);
1716 
1717 template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
1718  _To __convert_x86(_Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp,
1719  _Tp, _Tp, _Tp, _Tp);
1720 #endif // _GLIBCXX_SIMD_WORKAROUND_PR85048
1721 
1722 //}}}
1723 // __bit_cast {{{
1724 template <typename _To, typename _From>
1725  _GLIBCXX_SIMD_INTRINSIC constexpr _To
1726  __bit_cast(const _From __x)
1727  {
1728 #if __has_builtin(__builtin_bit_cast)
1729  return __builtin_bit_cast(_To, __x);
1730 #else
1731  static_assert(sizeof(_To) == sizeof(_From));
1732  constexpr bool __to_is_vectorizable
1733  = is_arithmetic_v<_To> || is_enum_v<_To>;
1734  constexpr bool __from_is_vectorizable
1735  = is_arithmetic_v<_From> || is_enum_v<_From>;
1736  if constexpr (__is_vector_type_v<_To> && __is_vector_type_v<_From>)
1737  return reinterpret_cast<_To>(__x);
1738  else if constexpr (__is_vector_type_v<_To> && __from_is_vectorizable)
1739  {
1740  using _FV [[gnu::vector_size(sizeof(_From))]] = _From;
1741  return reinterpret_cast<_To>(_FV{__x});
1742  }
1743  else if constexpr (__to_is_vectorizable && __from_is_vectorizable)
1744  {
1745  using _TV [[gnu::vector_size(sizeof(_To))]] = _To;
1746  using _FV [[gnu::vector_size(sizeof(_From))]] = _From;
1747  return reinterpret_cast<_TV>(_FV{__x})[0];
1748  }
1749  else if constexpr (__to_is_vectorizable && __is_vector_type_v<_From>)
1750  {
1751  using _TV [[gnu::vector_size(sizeof(_To))]] = _To;
1752  return reinterpret_cast<_TV>(__x)[0];
1753  }
1754  else
1755  {
1756  _To __r;
1757  __builtin_memcpy(reinterpret_cast<char*>(&__r),
1758  reinterpret_cast<const char*>(&__x), sizeof(_To));
1759  return __r;
1760  }
1761 #endif
1762  }
1763 
1764 // }}}
1765 // __to_intrin {{{
1766 template <typename _Tp, typename _TVT = _VectorTraits<_Tp>,
1767  typename _R
1768  = __intrinsic_type_t<typename _TVT::value_type, _TVT::_S_full_size>>
1769  _GLIBCXX_SIMD_INTRINSIC constexpr _R
1770  __to_intrin(_Tp __x)
1771  {
1772  static_assert(sizeof(__x) <= sizeof(_R),
1773  "__to_intrin may never drop values off the end");
1774  if constexpr (sizeof(__x) == sizeof(_R))
1775  return reinterpret_cast<_R>(__as_vector(__x));
1776  else
1777  {
1778  using _Up = __int_for_sizeof_t<_Tp>;
1779  return reinterpret_cast<_R>(
1780  __vector_type_t<_Up, sizeof(_R) / sizeof(_Up)>{__bit_cast<_Up>(__x)});
1781  }
1782  }
1783 
1784 // }}}
1785 // __make_vector{{{
1786 template <typename _Tp, typename... _Args>
1787  _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, sizeof...(_Args)>
1788  __make_vector(const _Args&... __args)
1789  {
1790  return __vector_type_t<_Tp, sizeof...(_Args)>{static_cast<_Tp>(__args)...};
1791  }
1792 
1793 // }}}
1794 // __vector_broadcast{{{
1795 template <size_t _Np, typename _Tp>
1796  _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np>
1797  __vector_broadcast(_Tp __x)
1798  {
1799  return __call_with_n_evaluations<_Np>(
1800  [](auto... __xx) { return __vector_type_t<_Tp, _Np>{__xx...}; },
1801  [&__x](int) { return __x; });
1802  }
1803 
1804 // }}}
1805 // __generate_vector{{{
1806  template <typename _Tp, size_t _Np, typename _Gp, size_t... _I>
1807  _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np>
1808  __generate_vector_impl(_Gp&& __gen, index_sequence<_I...>)
1809  {
1810  return __vector_type_t<_Tp, _Np>{
1811  static_cast<_Tp>(__gen(_SizeConstant<_I>()))...};
1812  }
1813 
1814 template <typename _V, typename _VVT = _VectorTraits<_V>, typename _Gp>
1815  _GLIBCXX_SIMD_INTRINSIC constexpr _V
1816  __generate_vector(_Gp&& __gen)
1817  {
1818  if constexpr (__is_vector_type_v<_V>)
1819  return __generate_vector_impl<typename _VVT::value_type,
1820  _VVT::_S_full_size>(
1821  static_cast<_Gp&&>(__gen), make_index_sequence<_VVT::_S_full_size>());
1822  else
1823  return __generate_vector_impl<typename _VVT::value_type,
1824  _VVT::_S_partial_width>(
1825  static_cast<_Gp&&>(__gen),
1826  make_index_sequence<_VVT::_S_partial_width>());
1827  }
1828 
1829 template <typename _Tp, size_t _Np, typename _Gp>
1830  _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np>
1831  __generate_vector(_Gp&& __gen)
1832  {
1833  return __generate_vector_impl<_Tp, _Np>(static_cast<_Gp&&>(__gen),
1834  make_index_sequence<_Np>());
1835  }
1836 
1837 // }}}
1838 // __xor{{{
1839 template <typename _TW>
1840  _GLIBCXX_SIMD_INTRINSIC constexpr _TW
1841  __xor(_TW __a, _TW __b) noexcept
1842  {
1843  if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>)
1844  {
1845  using _Tp = typename conditional_t<__is_simd_wrapper_v<_TW>, _TW,
1846  _VectorTraitsImpl<_TW>>::value_type;
1847  if constexpr (is_floating_point_v<_Tp>)
1848  {
1849  using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>;
1850  return __vector_bitcast<_Tp>(__vector_bitcast<_Ip>(__a)
1851  ^ __vector_bitcast<_Ip>(__b));
1852  }
1853  else if constexpr (__is_vector_type_v<_TW>)
1854  return __a ^ __b;
1855  else
1856  return __a._M_data ^ __b._M_data;
1857  }
1858  else
1859  return __a ^ __b;
1860  }
1861 
1862 // }}}
1863 // __or{{{
1864 template <typename _TW>
1865  _GLIBCXX_SIMD_INTRINSIC constexpr _TW
1866  __or(_TW __a, _TW __b) noexcept
1867  {
1868  if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>)
1869  {
1870  using _Tp = typename conditional_t<__is_simd_wrapper_v<_TW>, _TW,
1871  _VectorTraitsImpl<_TW>>::value_type;
1872  if constexpr (is_floating_point_v<_Tp>)
1873  {
1874  using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>;
1875  return __vector_bitcast<_Tp>(__vector_bitcast<_Ip>(__a)
1876  | __vector_bitcast<_Ip>(__b));
1877  }
1878  else if constexpr (__is_vector_type_v<_TW>)
1879  return __a | __b;
1880  else
1881  return __a._M_data | __b._M_data;
1882  }
1883  else
1884  return __a | __b;
1885  }
1886 
1887 // }}}
1888 // __and{{{
1889 template <typename _TW>
1890  _GLIBCXX_SIMD_INTRINSIC constexpr _TW
1891  __and(_TW __a, _TW __b) noexcept
1892  {
1893  if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>)
1894  {
1895  using _Tp = typename conditional_t<__is_simd_wrapper_v<_TW>, _TW,
1896  _VectorTraitsImpl<_TW>>::value_type;
1897  if constexpr (is_floating_point_v<_Tp>)
1898  {
1899  using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>;
1900  return __vector_bitcast<_Tp>(__vector_bitcast<_Ip>(__a)
1901  & __vector_bitcast<_Ip>(__b));
1902  }
1903  else if constexpr (__is_vector_type_v<_TW>)
1904  return __a & __b;
1905  else
1906  return __a._M_data & __b._M_data;
1907  }
1908  else
1909  return __a & __b;
1910  }
1911 
1912 // }}}
1913 // __andnot{{{
1914 #if _GLIBCXX_SIMD_X86INTRIN && !defined __clang__
1915 static constexpr struct
1916 {
1917  _GLIBCXX_SIMD_INTRINSIC __v4sf
1918  operator()(__v4sf __a, __v4sf __b) const noexcept
1919  { return __builtin_ia32_andnps(__a, __b); }
1920 
1921  _GLIBCXX_SIMD_INTRINSIC __v2df
1922  operator()(__v2df __a, __v2df __b) const noexcept
1923  { return __builtin_ia32_andnpd(__a, __b); }
1924 
1925  _GLIBCXX_SIMD_INTRINSIC __v2di
1926  operator()(__v2di __a, __v2di __b) const noexcept
1927  { return __builtin_ia32_pandn128(__a, __b); }
1928 
1929  _GLIBCXX_SIMD_INTRINSIC __v8sf
1930  operator()(__v8sf __a, __v8sf __b) const noexcept
1931  { return __builtin_ia32_andnps256(__a, __b); }
1932 
1933  _GLIBCXX_SIMD_INTRINSIC __v4df
1934  operator()(__v4df __a, __v4df __b) const noexcept
1935  { return __builtin_ia32_andnpd256(__a, __b); }
1936 
1937  _GLIBCXX_SIMD_INTRINSIC __v4di
1938  operator()(__v4di __a, __v4di __b) const noexcept
1939  {
1940  if constexpr (__have_avx2)
1941  return __builtin_ia32_andnotsi256(__a, __b);
1942  else
1943  return reinterpret_cast<__v4di>(
1944  __builtin_ia32_andnpd256(reinterpret_cast<__v4df>(__a),
1945  reinterpret_cast<__v4df>(__b)));
1946  }
1947 
1948  _GLIBCXX_SIMD_INTRINSIC __v16sf
1949  operator()(__v16sf __a, __v16sf __b) const noexcept
1950  {
1951  if constexpr (__have_avx512dq)
1952  return _mm512_andnot_ps(__a, __b);
1953  else
1954  return reinterpret_cast<__v16sf>(
1955  _mm512_andnot_si512(reinterpret_cast<__v8di>(__a),
1956  reinterpret_cast<__v8di>(__b)));
1957  }
1958 
1959  _GLIBCXX_SIMD_INTRINSIC __v8df
1960  operator()(__v8df __a, __v8df __b) const noexcept
1961  {
1962  if constexpr (__have_avx512dq)
1963  return _mm512_andnot_pd(__a, __b);
1964  else
1965  return reinterpret_cast<__v8df>(
1966  _mm512_andnot_si512(reinterpret_cast<__v8di>(__a),
1967  reinterpret_cast<__v8di>(__b)));
1968  }
1969 
1970  _GLIBCXX_SIMD_INTRINSIC __v8di
1971  operator()(__v8di __a, __v8di __b) const noexcept
1972  { return _mm512_andnot_si512(__a, __b); }
1973 } _S_x86_andnot;
1974 #endif // _GLIBCXX_SIMD_X86INTRIN && !__clang__
1975 
1976 template <typename _TW>
1977  _GLIBCXX_SIMD_INTRINSIC constexpr _TW
1978  __andnot(_TW __a, _TW __b) noexcept
1979  {
1980  if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>)
1981  {
1982  using _TVT = conditional_t<__is_simd_wrapper_v<_TW>, _TW,
1983  _VectorTraitsImpl<_TW>>;
1984  using _Tp = typename _TVT::value_type;
1985 #if _GLIBCXX_SIMD_X86INTRIN && !defined __clang__
1986  if constexpr (sizeof(_TW) >= 16)
1987  {
1988  const auto __ai = __to_intrin(__a);
1989  const auto __bi = __to_intrin(__b);
1990  if (!__builtin_is_constant_evaluated()
1991  && !(__builtin_constant_p(__ai) && __builtin_constant_p(__bi)))
1992  {
1993  const auto __r = _S_x86_andnot(__ai, __bi);
1994  if constexpr (is_convertible_v<decltype(__r), _TW>)
1995  return __r;
1996  else
1997  return reinterpret_cast<typename _TVT::type>(__r);
1998  }
1999  }
2000 #endif // _GLIBCXX_SIMD_X86INTRIN
2001  using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>;
2002  return __vector_bitcast<_Tp>(~__vector_bitcast<_Ip>(__a)
2003  & __vector_bitcast<_Ip>(__b));
2004  }
2005  else
2006  return ~__a & __b;
2007  }
2008 
2009 // }}}
2010 // __not{{{
2011 template <typename _Tp, typename _TVT = _VectorTraits<_Tp>>
2012  _GLIBCXX_SIMD_INTRINSIC constexpr _Tp
2013  __not(_Tp __a) noexcept
2014  {
2015  if constexpr (is_floating_point_v<typename _TVT::value_type>)
2016  return reinterpret_cast<typename _TVT::type>(
2017  ~__vector_bitcast<unsigned>(__a));
2018  else
2019  return ~__a;
2020  }
2021 
2022 // }}}
2023 // __concat{{{
2024 template <typename _Tp, typename _TVT = _VectorTraits<_Tp>,
2025  typename _R = __vector_type_t<typename _TVT::value_type,
2026  _TVT::_S_full_size * 2>>
2027  constexpr _R
2028  __concat(_Tp a_, _Tp b_)
2029  {
2030 #ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_1
2031  using _W
2032  = conditional_t<is_floating_point_v<typename _TVT::value_type>, double,
2033  conditional_t<(sizeof(_Tp) >= 2 * sizeof(long long)),
2034  long long, typename _TVT::value_type>>;
2035  constexpr int input_width = sizeof(_Tp) / sizeof(_W);
2036  const auto __a = __vector_bitcast<_W>(a_);
2037  const auto __b = __vector_bitcast<_W>(b_);
2038  using _Up = __vector_type_t<_W, sizeof(_R) / sizeof(_W)>;
2039 #else
2040  constexpr int input_width = _TVT::_S_full_size;
2041  const _Tp& __a = a_;
2042  const _Tp& __b = b_;
2043  using _Up = _R;
2044 #endif
2045  if constexpr (input_width == 2)
2046  return reinterpret_cast<_R>(_Up{__a[0], __a[1], __b[0], __b[1]});
2047  else if constexpr (input_width == 4)
2048  return reinterpret_cast<_R>(
2049  _Up{__a[0], __a[1], __a[2], __a[3], __b[0], __b[1], __b[2], __b[3]});
2050  else if constexpr (input_width == 8)
2051  return reinterpret_cast<_R>(
2052  _Up{__a[0], __a[1], __a[2], __a[3], __a[4], __a[5], __a[6], __a[7],
2053  __b[0], __b[1], __b[2], __b[3], __b[4], __b[5], __b[6], __b[7]});
2054  else if constexpr (input_width == 16)
2055  return reinterpret_cast<_R>(
2056  _Up{__a[0], __a[1], __a[2], __a[3], __a[4], __a[5], __a[6],
2057  __a[7], __a[8], __a[9], __a[10], __a[11], __a[12], __a[13],
2058  __a[14], __a[15], __b[0], __b[1], __b[2], __b[3], __b[4],
2059  __b[5], __b[6], __b[7], __b[8], __b[9], __b[10], __b[11],
2060  __b[12], __b[13], __b[14], __b[15]});
2061  else if constexpr (input_width == 32)
2062  return reinterpret_cast<_R>(
2063  _Up{__a[0], __a[1], __a[2], __a[3], __a[4], __a[5], __a[6],
2064  __a[7], __a[8], __a[9], __a[10], __a[11], __a[12], __a[13],
2065  __a[14], __a[15], __a[16], __a[17], __a[18], __a[19], __a[20],
2066  __a[21], __a[22], __a[23], __a[24], __a[25], __a[26], __a[27],
2067  __a[28], __a[29], __a[30], __a[31], __b[0], __b[1], __b[2],
2068  __b[3], __b[4], __b[5], __b[6], __b[7], __b[8], __b[9],
2069  __b[10], __b[11], __b[12], __b[13], __b[14], __b[15], __b[16],
2070  __b[17], __b[18], __b[19], __b[20], __b[21], __b[22], __b[23],
2071  __b[24], __b[25], __b[26], __b[27], __b[28], __b[29], __b[30],
2072  __b[31]});
2073  }
2074 
2075 // }}}
2076 // __zero_extend {{{
2077 template <typename _Tp, typename _TVT = _VectorTraits<_Tp>>
2078  struct _ZeroExtendProxy
2079  {
2080  using value_type = typename _TVT::value_type;
2081  static constexpr size_t _Np = _TVT::_S_full_size;
2082  const _Tp __x;
2083 
2084  template <typename _To, typename _ToVT = _VectorTraits<_To>,
2085  typename
2086  = enable_if_t<is_same_v<typename _ToVT::value_type, value_type>>>
2087  _GLIBCXX_SIMD_INTRINSIC operator _To() const
2088  {
2089  constexpr size_t _ToN = _ToVT::_S_full_size;
2090  if constexpr (_ToN == _Np)
2091  return __x;
2092  else if constexpr (_ToN == 2 * _Np)
2093  {
2094 #ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_3
2095  if constexpr (__have_avx && _TVT::template _S_is<float, 4>)
2096  return __vector_bitcast<value_type>(
2097  _mm256_insertf128_ps(__m256(), __x, 0));
2098  else if constexpr (__have_avx && _TVT::template _S_is<double, 2>)
2099  return __vector_bitcast<value_type>(
2100  _mm256_insertf128_pd(__m256d(), __x, 0));
2101  else if constexpr (__have_avx2 && _Np * sizeof(value_type) == 16)
2102  return __vector_bitcast<value_type>(
2103  _mm256_insertf128_si256(__m256i(), __to_intrin(__x), 0));
2104  else if constexpr (__have_avx512f && _TVT::template _S_is<float, 8>)
2105  {
2106  if constexpr (__have_avx512dq)
2107  return __vector_bitcast<value_type>(
2108  _mm512_insertf32x8(__m512(), __x, 0));
2109  else
2110  return reinterpret_cast<__m512>(
2111  _mm512_insertf64x4(__m512d(),
2112  reinterpret_cast<__m256d>(__x), 0));
2113  }
2114  else if constexpr (__have_avx512f
2115  && _TVT::template _S_is<double, 4>)
2116  return __vector_bitcast<value_type>(
2117  _mm512_insertf64x4(__m512d(), __x, 0));
2118  else if constexpr (__have_avx512f && _Np * sizeof(value_type) == 32)
2119  return __vector_bitcast<value_type>(
2120  _mm512_inserti64x4(__m512i(), __to_intrin(__x), 0));
2121 #endif
2122  return __concat(__x, _Tp());
2123  }
2124  else if constexpr (_ToN == 4 * _Np)
2125  {
2126 #ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_3
2127  if constexpr (__have_avx512dq && _TVT::template _S_is<double, 2>)
2128  {
2129  return __vector_bitcast<value_type>(
2130  _mm512_insertf64x2(__m512d(), __x, 0));
2131  }
2132  else if constexpr (__have_avx512f
2133  && is_floating_point_v<value_type>)
2134  {
2135  return __vector_bitcast<value_type>(
2136  _mm512_insertf32x4(__m512(), reinterpret_cast<__m128>(__x),
2137  0));
2138  }
2139  else if constexpr (__have_avx512f && _Np * sizeof(value_type) == 16)
2140  {
2141  return __vector_bitcast<value_type>(
2142  _mm512_inserti32x4(__m512i(), __to_intrin(__x), 0));
2143  }
2144 #endif
2145  return __concat(__concat(__x, _Tp()),
2146  __vector_type_t<value_type, _Np * 2>());
2147  }
2148  else if constexpr (_ToN == 8 * _Np)
2149  return __concat(operator __vector_type_t<value_type, _Np * 4>(),
2150  __vector_type_t<value_type, _Np * 4>());
2151  else if constexpr (_ToN == 16 * _Np)
2152  return __concat(operator __vector_type_t<value_type, _Np * 8>(),
2153  __vector_type_t<value_type, _Np * 8>());
2154  else
2155  __assert_unreachable<_Tp>();
2156  }
2157  };
2158 
2159 template <typename _Tp, typename _TVT = _VectorTraits<_Tp>>
2160  _GLIBCXX_SIMD_INTRINSIC _ZeroExtendProxy<_Tp, _TVT>
2161  __zero_extend(_Tp __x)
2162  { return {__x}; }
2163 
2164 // }}}
2165 // __extract<_Np, By>{{{
2166 template <int _Offset,
2167  int _SplitBy,
2168  typename _Tp,
2169  typename _TVT = _VectorTraits<_Tp>,
2170  typename _R = __vector_type_t<typename _TVT::value_type,
2171  _TVT::_S_full_size / _SplitBy>>
2172  _GLIBCXX_SIMD_INTRINSIC constexpr _R
2173  __extract(_Tp __in)
2174  {
2175  using value_type = typename _TVT::value_type;
2176 #if _GLIBCXX_SIMD_X86INTRIN // {{{
2177  if constexpr (sizeof(_Tp) == 64 && _SplitBy == 4 && _Offset > 0)
2178  {
2179  if constexpr (__have_avx512dq && is_same_v<double, value_type>)
2180  return _mm512_extractf64x2_pd(__to_intrin(__in), _Offset);
2181  else if constexpr (is_floating_point_v<value_type>)
2182  return __vector_bitcast<value_type>(
2183  _mm512_extractf32x4_ps(__intrin_bitcast<__m512>(__in), _Offset));
2184  else
2185  return reinterpret_cast<_R>(
2186  _mm512_extracti32x4_epi32(__intrin_bitcast<__m512i>(__in),
2187  _Offset));
2188  }
2189  else
2190 #endif // _GLIBCXX_SIMD_X86INTRIN }}}
2191  {
2192 #ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_1
2193  using _W = conditional_t<
2194  is_floating_point_v<value_type>, double,
2195  conditional_t<(sizeof(_R) >= 16), long long, value_type>>;
2196  static_assert(sizeof(_R) % sizeof(_W) == 0);
2197  constexpr int __return_width = sizeof(_R) / sizeof(_W);
2198  using _Up = __vector_type_t<_W, __return_width>;
2199  const auto __x = __vector_bitcast<_W>(__in);
2200 #else
2201  constexpr int __return_width = _TVT::_S_full_size / _SplitBy;
2202  using _Up = _R;
2203  const __vector_type_t<value_type, _TVT::_S_full_size>& __x
2204  = __in; // only needed for _Tp = _SimdWrapper<value_type, _Np>
2205 #endif
2206  constexpr int _O = _Offset * __return_width;
2207  return __call_with_subscripts<__return_width, _O>(
2208  __x, [](auto... __entries) {
2209  return reinterpret_cast<_R>(_Up{__entries...});
2210  });
2211  }
2212  }
2213 
2214 // }}}
2215 // __lo/__hi64[z]{{{
2216 template <typename _Tp,
2217  typename _R
2218  = __vector_type8_t<typename _VectorTraits<_Tp>::value_type>>
2219  _GLIBCXX_SIMD_INTRINSIC constexpr _R
2220  __lo64(_Tp __x)
2221  {
2222  _R __r{};
2223  __builtin_memcpy(&__r, &__x, 8);
2224  return __r;
2225  }
2226 
2227 template <typename _Tp,
2228  typename _R
2229  = __vector_type8_t<typename _VectorTraits<_Tp>::value_type>>
2230  _GLIBCXX_SIMD_INTRINSIC constexpr _R
2231  __hi64(_Tp __x)
2232  {
2233  static_assert(sizeof(_Tp) == 16, "use __hi64z if you meant it");
2234  _R __r{};
2235  __builtin_memcpy(&__r, reinterpret_cast<const char*>(&__x) + 8, 8);
2236  return __r;
2237  }
2238 
2239 template <typename _Tp,
2240  typename _R
2241  = __vector_type8_t<typename _VectorTraits<_Tp>::value_type>>
2242  _GLIBCXX_SIMD_INTRINSIC constexpr _R
2243  __hi64z([[maybe_unused]] _Tp __x)
2244  {
2245  _R __r{};
2246  if constexpr (sizeof(_Tp) == 16)
2247  __builtin_memcpy(&__r, reinterpret_cast<const char*>(&__x) + 8, 8);
2248  return __r;
2249  }
2250 
2251 // }}}
2252 // __lo/__hi128{{{
2253 template <typename _Tp>
2254  _GLIBCXX_SIMD_INTRINSIC constexpr auto
2255  __lo128(_Tp __x)
2256  { return __extract<0, sizeof(_Tp) / 16>(__x); }
2257 
2258 template <typename _Tp>
2259  _GLIBCXX_SIMD_INTRINSIC constexpr auto
2260  __hi128(_Tp __x)
2261  {
2262  static_assert(sizeof(__x) == 32);
2263  return __extract<1, 2>(__x);
2264  }
2265 
2266 // }}}
2267 // __lo/__hi256{{{
2268 template <typename _Tp>
2269  _GLIBCXX_SIMD_INTRINSIC constexpr auto
2270  __lo256(_Tp __x)
2271  {
2272  static_assert(sizeof(__x) == 64);
2273  return __extract<0, 2>(__x);
2274  }
2275 
2276 template <typename _Tp>
2277  _GLIBCXX_SIMD_INTRINSIC constexpr auto
2278  __hi256(_Tp __x)
2279  {
2280  static_assert(sizeof(__x) == 64);
2281  return __extract<1, 2>(__x);
2282  }
2283 
2284 // }}}
2285 // __auto_bitcast{{{
2286 template <typename _Tp>
2287  struct _AutoCast
2288  {
2289  static_assert(__is_vector_type_v<_Tp>);
2290 
2291  const _Tp __x;
2292 
2293  template <typename _Up, typename _UVT = _VectorTraits<_Up>>
2294  _GLIBCXX_SIMD_INTRINSIC constexpr operator _Up() const
2295  { return __intrin_bitcast<typename _UVT::type>(__x); }
2296  };
2297 
2298 template <typename _Tp>
2299  _GLIBCXX_SIMD_INTRINSIC constexpr _AutoCast<_Tp>
2300  __auto_bitcast(const _Tp& __x)
2301  { return {__x}; }
2302 
2303 template <typename _Tp, size_t _Np>
2304  _GLIBCXX_SIMD_INTRINSIC constexpr
2305  _AutoCast<typename _SimdWrapper<_Tp, _Np>::_BuiltinType>
2306  __auto_bitcast(const _SimdWrapper<_Tp, _Np>& __x)
2307  { return {__x._M_data}; }
2308 
2309 // }}}
2310 // ^^^ ---- builtin vector types [[gnu::vector_size(N)]] and operations ---- ^^^
2311 
2312 #if _GLIBCXX_SIMD_HAVE_SSE_ABI
2313 // __bool_storage_member_type{{{
2314 #if _GLIBCXX_SIMD_HAVE_AVX512F && _GLIBCXX_SIMD_X86INTRIN
2315 template <size_t _Size>
2316  struct __bool_storage_member_type
2317  {
2318  static_assert((_Size & (_Size - 1)) != 0,
2319  "This trait may only be used for non-power-of-2 sizes. "
2320  "Power-of-2 sizes must be specialized.");
2321  using type =
2322  typename __bool_storage_member_type<std::__bit_ceil(_Size)>::type;
2323  };
2324 
2325 template <>
2326  struct __bool_storage_member_type<1> { using type = bool; };
2327 
2328 template <>
2329  struct __bool_storage_member_type<2> { using type = __mmask8; };
2330 
2331 template <>
2332  struct __bool_storage_member_type<4> { using type = __mmask8; };
2333 
2334 template <>
2335  struct __bool_storage_member_type<8> { using type = __mmask8; };
2336 
2337 template <>
2338  struct __bool_storage_member_type<16> { using type = __mmask16; };
2339 
2340 template <>
2341  struct __bool_storage_member_type<32> { using type = __mmask32; };
2342 
2343 template <>
2344  struct __bool_storage_member_type<64> { using type = __mmask64; };
2345 #endif // _GLIBCXX_SIMD_HAVE_AVX512F
2346 
2347 // }}}
2348 // __intrinsic_type (x86){{{
2349 // the following excludes bool via __is_vectorizable
2350 #if _GLIBCXX_SIMD_HAVE_SSE
2351 template <typename _Tp, size_t _Bytes>
2352  struct __intrinsic_type<_Tp, _Bytes,
2353  enable_if_t<__is_vectorizable_v<_Tp> && _Bytes <= 64>>
2354  {
2355  static_assert(!is_same_v<_Tp, long double>,
2356  "no __intrinsic_type support for long double on x86");
2357 
2358  static constexpr size_t _S_VBytes = _Bytes <= 16 ? 16
2359  : _Bytes <= 32 ? 32
2360  : 64;
2361 
2362  using type [[__gnu__::__vector_size__(_S_VBytes)]]
2363  = conditional_t<is_integral_v<_Tp>, long long int, _Tp>;
2364  };
2365 #endif // _GLIBCXX_SIMD_HAVE_SSE
2366 
2367 // }}}
2368 #endif // _GLIBCXX_SIMD_HAVE_SSE_ABI
2369 // __intrinsic_type (ARM){{{
2370 #if _GLIBCXX_SIMD_HAVE_NEON
2371 template <>
2372  struct __intrinsic_type<float, 8, void>
2373  { using type = float32x2_t; };
2374 
2375 template <>
2376  struct __intrinsic_type<float, 16, void>
2377  { using type = float32x4_t; };
2378 
2379 #if _GLIBCXX_SIMD_HAVE_NEON_A64
2380 template <>
2381  struct __intrinsic_type<double, 8, void>
2382  { using type = float64x1_t; };
2383 
2384 template <>
2385  struct __intrinsic_type<double, 16, void>
2386  { using type = float64x2_t; };
2387 #endif
2388 
2389 #define _GLIBCXX_SIMD_ARM_INTRIN(_Bits, _Np) \
2390 template <> \
2391  struct __intrinsic_type<__int_with_sizeof_t<_Bits / 8>, \
2392  _Np * _Bits / 8, void> \
2393  { using type = int##_Bits##x##_Np##_t; }; \
2394 template <> \
2395  struct __intrinsic_type<make_unsigned_t<__int_with_sizeof_t<_Bits / 8>>, \
2396  _Np * _Bits / 8, void> \
2397  { using type = uint##_Bits##x##_Np##_t; }
2398 _GLIBCXX_SIMD_ARM_INTRIN(8, 8);
2399 _GLIBCXX_SIMD_ARM_INTRIN(8, 16);
2400 _GLIBCXX_SIMD_ARM_INTRIN(16, 4);
2401 _GLIBCXX_SIMD_ARM_INTRIN(16, 8);
2402 _GLIBCXX_SIMD_ARM_INTRIN(32, 2);
2403 _GLIBCXX_SIMD_ARM_INTRIN(32, 4);
2404 _GLIBCXX_SIMD_ARM_INTRIN(64, 1);
2405 _GLIBCXX_SIMD_ARM_INTRIN(64, 2);
2406 #undef _GLIBCXX_SIMD_ARM_INTRIN
2407 
2408 template <typename _Tp, size_t _Bytes>
2409  struct __intrinsic_type<_Tp, _Bytes,
2410  enable_if_t<__is_vectorizable_v<_Tp> && _Bytes <= 16>>
2411  {
2412  static constexpr int _SVecBytes = _Bytes <= 8 ? 8 : 16;
2413  using _Ip = __int_for_sizeof_t<_Tp>;
2414  using _Up = conditional_t<
2415  is_floating_point_v<_Tp>, _Tp,
2416  conditional_t<is_unsigned_v<_Tp>, make_unsigned_t<_Ip>, _Ip>>;
2417  static_assert(!is_same_v<_Tp, _Up> || _SVecBytes != _Bytes,
2418  "should use explicit specialization above");
2419  using type = typename __intrinsic_type<_Up, _SVecBytes>::type;
2420  };
2421 #endif // _GLIBCXX_SIMD_HAVE_NEON
2422 
2423 // }}}
2424 // __intrinsic_type (PPC){{{
2425 #ifdef __ALTIVEC__
2426 template <typename _Tp>
2427  struct __intrinsic_type_impl;
2428 
2429 #define _GLIBCXX_SIMD_PPC_INTRIN(_Tp) \
2430  template <> \
2431  struct __intrinsic_type_impl<_Tp> { using type = __vector _Tp; }
2432 _GLIBCXX_SIMD_PPC_INTRIN(float);
2433 #ifdef __VSX__
2434 _GLIBCXX_SIMD_PPC_INTRIN(double);
2435 #endif
2436 _GLIBCXX_SIMD_PPC_INTRIN(signed char);
2437 _GLIBCXX_SIMD_PPC_INTRIN(unsigned char);
2438 _GLIBCXX_SIMD_PPC_INTRIN(signed short);
2439 _GLIBCXX_SIMD_PPC_INTRIN(unsigned short);
2440 _GLIBCXX_SIMD_PPC_INTRIN(signed int);
2441 _GLIBCXX_SIMD_PPC_INTRIN(unsigned int);
2442 #if defined __VSX__ || __SIZEOF_LONG__ == 4
2443 _GLIBCXX_SIMD_PPC_INTRIN(signed long);
2444 _GLIBCXX_SIMD_PPC_INTRIN(unsigned long);
2445 #endif
2446 #ifdef __VSX__
2447 _GLIBCXX_SIMD_PPC_INTRIN(signed long long);
2448 _GLIBCXX_SIMD_PPC_INTRIN(unsigned long long);
2449 #endif
2450 #undef _GLIBCXX_SIMD_PPC_INTRIN
2451 
2452 template <typename _Tp, size_t _Bytes>
2453  struct __intrinsic_type<_Tp, _Bytes,
2454  enable_if_t<__is_vectorizable_v<_Tp> && _Bytes <= 16>>
2455  {
2456  static constexpr bool _S_is_ldouble = is_same_v<_Tp, long double>;
2457  // allow _Tp == long double with -mlong-double-64
2458  static_assert(!(_S_is_ldouble && sizeof(long double) > sizeof(double)),
2459  "no __intrinsic_type support for 128-bit floating point on PowerPC");
2460 #ifndef __VSX__
2461  static_assert(!(is_same_v<_Tp, double>
2462  || (_S_is_ldouble && sizeof(long double) == sizeof(double))),
2463  "no __intrinsic_type support for 64-bit floating point on PowerPC w/o VSX");
2464 #endif
2465  using type =
2466  typename __intrinsic_type_impl<
2467  conditional_t<is_floating_point_v<_Tp>,
2468  conditional_t<_S_is_ldouble, double, _Tp>,
2469  __int_for_sizeof_t<_Tp>>>::type;
2470  };
2471 #endif // __ALTIVEC__
2472 
2473 // }}}
2474 // _SimdWrapper<bool>{{{1
2475 template <size_t _Width>
2476  struct _SimdWrapper<bool, _Width,
2477  void_t<typename __bool_storage_member_type<_Width>::type>>
2478  {
2479  using _BuiltinType = typename __bool_storage_member_type<_Width>::type;
2480  using value_type = bool;
2481 
2482  static constexpr size_t _S_full_size = sizeof(_BuiltinType) * __CHAR_BIT__;
2483 
2484  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper<bool, _S_full_size>
2485  __as_full_vector() const { return _M_data; }
2486 
2487  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper() = default;
2488  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(_BuiltinType __k)
2489  : _M_data(__k) {};
2490 
2491  _GLIBCXX_SIMD_INTRINSIC operator const _BuiltinType&() const
2492  { return _M_data; }
2493 
2494  _GLIBCXX_SIMD_INTRINSIC operator _BuiltinType&()
2495  { return _M_data; }
2496 
2497  _GLIBCXX_SIMD_INTRINSIC _BuiltinType __intrin() const
2498  { return _M_data; }
2499 
2500  _GLIBCXX_SIMD_INTRINSIC constexpr value_type operator[](size_t __i) const
2501  { return _M_data & (_BuiltinType(1) << __i); }
2502 
2503  template <size_t __i>
2504  _GLIBCXX_SIMD_INTRINSIC constexpr value_type
2505  operator[](_SizeConstant<__i>) const
2506  { return _M_data & (_BuiltinType(1) << __i); }
2507 
2508  _GLIBCXX_SIMD_INTRINSIC constexpr void _M_set(size_t __i, value_type __x)
2509  {
2510  if (__x)
2511  _M_data |= (_BuiltinType(1) << __i);
2512  else
2513  _M_data &= ~(_BuiltinType(1) << __i);
2514  }
2515 
2516  _GLIBCXX_SIMD_INTRINSIC
2517  constexpr bool _M_is_constprop() const
2518  { return __builtin_constant_p(_M_data); }
2519 
2520  _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_none_of() const
2521  {
2522  if (__builtin_constant_p(_M_data))
2523  {
2524  constexpr int __nbits = sizeof(_BuiltinType) * __CHAR_BIT__;
2525  constexpr _BuiltinType __active_mask
2526  = ~_BuiltinType() >> (__nbits - _Width);
2527  return (_M_data & __active_mask) == 0;
2528  }
2529  return false;
2530  }
2531 
2532  _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_all_of() const
2533  {
2534  if (__builtin_constant_p(_M_data))
2535  {
2536  constexpr int __nbits = sizeof(_BuiltinType) * __CHAR_BIT__;
2537  constexpr _BuiltinType __active_mask
2538  = ~_BuiltinType() >> (__nbits - _Width);
2539  return (_M_data & __active_mask) == __active_mask;
2540  }
2541  return false;
2542  }
2543 
2544  _BuiltinType _M_data;
2545  };
2546 
2547 // _SimdWrapperBase{{{1
2548 template <bool _MustZeroInitPadding, typename _BuiltinType>
2549  struct _SimdWrapperBase;
2550 
2551 template <typename _BuiltinType>
2552  struct _SimdWrapperBase<false, _BuiltinType> // no padding or no SNaNs
2553  {
2554  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase() = default;
2555  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase(_BuiltinType __init)
2556  : _M_data(__init)
2557  {}
2558 
2559  _BuiltinType _M_data;
2560  };
2561 
2562 template <typename _BuiltinType>
2563  struct _SimdWrapperBase<true, _BuiltinType> // with padding that needs to
2564  // never become SNaN
2565  {
2566  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase() : _M_data() {}
2567  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase(_BuiltinType __init)
2568  : _M_data(__init)
2569  {}
2570 
2571  _BuiltinType _M_data;
2572  };
2573 
2574 // }}}
2575 // _SimdWrapper{{{
2576 template <typename _Tp, size_t _Width>
2577  struct _SimdWrapper<
2578  _Tp, _Width,
2579  void_t<__vector_type_t<_Tp, _Width>, __intrinsic_type_t<_Tp, _Width>>>
2580  : _SimdWrapperBase<__has_iec559_behavior<__signaling_NaN, _Tp>::value
2581  && sizeof(_Tp) * _Width
2582  == sizeof(__vector_type_t<_Tp, _Width>),
2583  __vector_type_t<_Tp, _Width>>
2584  {
2585  using _Base
2586  = _SimdWrapperBase<__has_iec559_behavior<__signaling_NaN, _Tp>::value
2587  && sizeof(_Tp) * _Width
2588  == sizeof(__vector_type_t<_Tp, _Width>),
2589  __vector_type_t<_Tp, _Width>>;
2590 
2591  static_assert(__is_vectorizable_v<_Tp>);
2592  static_assert(_Width >= 2); // 1 doesn't make sense, use _Tp directly then
2593 
2594  using _BuiltinType = __vector_type_t<_Tp, _Width>;
2595  using value_type = _Tp;
2596 
2597  static inline constexpr size_t _S_full_size
2598  = sizeof(_BuiltinType) / sizeof(value_type);
2599  static inline constexpr int _S_size = _Width;
2600  static inline constexpr bool _S_is_partial = _S_full_size != _S_size;
2601 
2602  using _Base::_M_data;
2603 
2604  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper<_Tp, _S_full_size>
2605  __as_full_vector() const
2606  { return _M_data; }
2607 
2608  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(initializer_list<_Tp> __init)
2609  : _Base(__generate_from_n_evaluations<_Width, _BuiltinType>(
2610  [&](auto __i) { return __init.begin()[__i.value]; })) {}
2611 
2612  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper() = default;
2613  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(const _SimdWrapper&)
2614  = default;
2615  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(_SimdWrapper&&) = default;
2616 
2617  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper&
2618  operator=(const _SimdWrapper&) = default;
2619  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper&
2620  operator=(_SimdWrapper&&) = default;
2621 
2622  template <typename _V, typename = enable_if_t<disjunction_v<
2623  is_same<_V, __vector_type_t<_Tp, _Width>>,
2624  is_same<_V, __intrinsic_type_t<_Tp, _Width>>>>>
2625  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(_V __x)
2626  // __vector_bitcast can convert e.g. __m128 to __vector(2) float
2627  : _Base(__vector_bitcast<_Tp, _Width>(__x)) {}
2628 
2629  template <typename... _As,
2630  typename = enable_if_t<((is_same_v<simd_abi::scalar, _As> && ...)
2631  && sizeof...(_As) <= _Width)>>
2632  _GLIBCXX_SIMD_INTRINSIC constexpr
2633  operator _SimdTuple<_Tp, _As...>() const
2634  {
2635  const auto& dd = _M_data; // workaround for GCC7 ICE
2636  return __generate_from_n_evaluations<sizeof...(_As),
2637  _SimdTuple<_Tp, _As...>>([&](
2638  auto __i) constexpr { return dd[int(__i)]; });
2639  }
2640 
2641  _GLIBCXX_SIMD_INTRINSIC constexpr operator const _BuiltinType&() const
2642  { return _M_data; }
2643 
2644  _GLIBCXX_SIMD_INTRINSIC constexpr operator _BuiltinType&()
2645  { return _M_data; }
2646 
2647  _GLIBCXX_SIMD_INTRINSIC constexpr _Tp operator[](size_t __i) const
2648  { return _M_data[__i]; }
2649 
2650  template <size_t __i>
2651  _GLIBCXX_SIMD_INTRINSIC constexpr _Tp operator[](_SizeConstant<__i>) const
2652  { return _M_data[__i]; }
2653 
2654  _GLIBCXX_SIMD_INTRINSIC constexpr void _M_set(size_t __i, _Tp __x)
2655  { _M_data[__i] = __x; }
2656 
2657  _GLIBCXX_SIMD_INTRINSIC
2658  constexpr bool _M_is_constprop() const
2659  { return __builtin_constant_p(_M_data); }
2660 
2661  _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_none_of() const
2662  {
2663  if (__builtin_constant_p(_M_data))
2664  {
2665  bool __r = true;
2666  if constexpr (is_floating_point_v<_Tp>)
2667  {
2668  using _Ip = __int_for_sizeof_t<_Tp>;
2669  const auto __intdata = __vector_bitcast<_Ip>(_M_data);
2670  __execute_n_times<_Width>(
2671  [&](auto __i) { __r &= __intdata[__i.value] == _Ip(); });
2672  }
2673  else
2674  __execute_n_times<_Width>(
2675  [&](auto __i) { __r &= _M_data[__i.value] == _Tp(); });
2676  return __r;
2677  }
2678  return false;
2679  }
2680 
2681  _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_all_of() const
2682  {
2683  if (__builtin_constant_p(_M_data))
2684  {
2685  bool __r = true;
2686  if constexpr (is_floating_point_v<_Tp>)
2687  {
2688  using _Ip = __int_for_sizeof_t<_Tp>;
2689  const auto __intdata = __vector_bitcast<_Ip>(_M_data);
2690  __execute_n_times<_Width>(
2691  [&](auto __i) { __r &= __intdata[__i.value] == ~_Ip(); });
2692  }
2693  else
2694  __execute_n_times<_Width>(
2695  [&](auto __i) { __r &= _M_data[__i.value] == ~_Tp(); });
2696  return __r;
2697  }
2698  return false;
2699  }
2700  };
2701 
2702 // }}}
2703 
2704 // __vectorized_sizeof {{{
2705 template <typename _Tp>
2706  constexpr size_t
2707  __vectorized_sizeof()
2708  {
2709  if constexpr (!__is_vectorizable_v<_Tp>)
2710  return 0;
2711 
2712  if constexpr (sizeof(_Tp) <= 8)
2713  {
2714  // X86:
2715  if constexpr (__have_avx512bw)
2716  return 64;
2717  if constexpr (__have_avx512f && sizeof(_Tp) >= 4)
2718  return 64;
2719  if constexpr (__have_avx2)
2720  return 32;
2721  if constexpr (__have_avx && is_floating_point_v<_Tp>)
2722  return 32;
2723  if constexpr (__have_sse2)
2724  return 16;
2725  if constexpr (__have_sse && is_same_v<_Tp, float>)
2726  return 16;
2727  /* The following is too much trouble because of mixed MMX and x87 code.
2728  * While nothing here explicitly calls MMX instructions of registers,
2729  * they are still emitted but no EMMS cleanup is done.
2730  if constexpr (__have_mmx && sizeof(_Tp) <= 4 && is_integral_v<_Tp>)
2731  return 8;
2732  */
2733 
2734  // PowerPC:
2735  if constexpr (__have_power8vec
2736  || (__have_power_vmx && (sizeof(_Tp) < 8))
2737  || (__have_power_vsx && is_floating_point_v<_Tp>) )
2738  return 16;
2739 
2740  // ARM:
2741  if constexpr (__have_neon_a64
2742  || (__have_neon_a32 && !is_same_v<_Tp, double>) )
2743  return 16;
2744  if constexpr (__have_neon
2745  && sizeof(_Tp) < 8
2746  // Only allow fp if the user allows non-ICE559 fp (e.g.
2747  // via -ffast-math). ARMv7 NEON fp is not conforming to
2748  // IEC559.
2749  && (__support_neon_float || !is_floating_point_v<_Tp>))
2750  return 16;
2751  }
2752 
2753  return sizeof(_Tp);
2754  }
2755 
2756 // }}}
2757 namespace simd_abi {
2758 // most of simd_abi is defined in simd_detail.h
2759 template <typename _Tp>
2760  inline constexpr int max_fixed_size
2761  = (__have_avx512bw && sizeof(_Tp) == 1) ? 64 : 32;
2762 
2763 // compatible {{{
2764 #if defined __x86_64__ || defined __aarch64__
2765 template <typename _Tp>
2766  using compatible = conditional_t<(sizeof(_Tp) <= 8), _VecBuiltin<16>, scalar>;
2767 #elif defined __ARM_NEON
2768 // FIXME: not sure, probably needs to be scalar (or dependent on the hard-float
2769 // ABI?)
2770 template <typename _Tp>
2771  using compatible
2772  = conditional_t<(sizeof(_Tp) < 8
2773  && (__support_neon_float || !is_floating_point_v<_Tp>)),
2774  _VecBuiltin<16>, scalar>;
2775 #else
2776 template <typename>
2777  using compatible = scalar;
2778 #endif
2779 
2780 // }}}
2781 // native {{{
2782 template <typename _Tp>
2783  constexpr auto
2784  __determine_native_abi()
2785  {
2786  constexpr size_t __bytes = __vectorized_sizeof<_Tp>();
2787  if constexpr (__bytes == sizeof(_Tp))
2788  return static_cast<scalar*>(nullptr);
2789  else if constexpr (__have_avx512vl || (__have_avx512f && __bytes == 64))
2790  return static_cast<_VecBltnBtmsk<__bytes>*>(nullptr);
2791  else
2792  return static_cast<_VecBuiltin<__bytes>*>(nullptr);
2793  }
2794 
2795 template <typename _Tp, typename = enable_if_t<__is_vectorizable_v<_Tp>>>
2796  using native = remove_pointer_t<decltype(__determine_native_abi<_Tp>())>;
2797 
2798 // }}}
2799 // __default_abi {{{
2800 #if defined _GLIBCXX_SIMD_DEFAULT_ABI
2801 template <typename _Tp>
2802  using __default_abi = _GLIBCXX_SIMD_DEFAULT_ABI<_Tp>;
2803 #else
2804 template <typename _Tp>
2805  using __default_abi = compatible<_Tp>;
2806 #endif
2807 
2808 // }}}
2809 } // namespace simd_abi
2810 
2811 // traits {{{1
2812 // is_abi_tag {{{2
2813 template <typename _Tp, typename = void_t<>>
2814  struct is_abi_tag : false_type {};
2815 
2816 template <typename _Tp>
2817  struct is_abi_tag<_Tp, void_t<typename _Tp::_IsValidAbiTag>>
2818  : public _Tp::_IsValidAbiTag {};
2819 
2820 template <typename _Tp>
2821  inline constexpr bool is_abi_tag_v = is_abi_tag<_Tp>::value;
2822 
2823 // is_simd(_mask) {{{2
2824 template <typename _Tp>
2825  struct is_simd : public false_type {};
2826 
2827 template <typename _Tp>
2828  inline constexpr bool is_simd_v = is_simd<_Tp>::value;
2829 
2830 template <typename _Tp>
2831  struct is_simd_mask : public false_type {};
2832 
2833 template <typename _Tp>
2834 inline constexpr bool is_simd_mask_v = is_simd_mask<_Tp>::value;
2835 
2836 // simd_size {{{2
2837 template <typename _Tp, typename _Abi, typename = void>
2838  struct __simd_size_impl {};
2839 
2840 template <typename _Tp, typename _Abi>
2841  struct __simd_size_impl<
2842  _Tp, _Abi,
2843  enable_if_t<conjunction_v<__is_vectorizable<_Tp>, is_abi_tag<_Abi>>>>
2844  : _SizeConstant<_Abi::template _S_size<_Tp>> {};
2845 
2846 template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>>
2847  struct simd_size : __simd_size_impl<_Tp, _Abi> {};
2848 
2849 template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>>
2850  inline constexpr size_t simd_size_v = simd_size<_Tp, _Abi>::value;
2851 
2852 // simd_abi::deduce {{{2
2853 template <typename _Tp, size_t _Np, typename = void>
2854  struct __deduce_impl;
2855 
2856 namespace simd_abi {
2857 /**
2858  * @tparam _Tp The requested `value_type` for the elements.
2859  * @tparam _Np The requested number of elements.
2860  * @tparam _Abis This parameter is ignored, since this implementation cannot
2861  * make any use of it. Either __a good native ABI is matched and used as `type`
2862  * alias, or the `fixed_size<_Np>` ABI is used, which internally is built from
2863  * the best matching native ABIs.
2864  */
2865 template <typename _Tp, size_t _Np, typename...>
2866  struct deduce : __deduce_impl<_Tp, _Np> {};
2867 
2868 template <typename _Tp, size_t _Np, typename... _Abis>
2869  using deduce_t = typename deduce<_Tp, _Np, _Abis...>::type;
2870 } // namespace simd_abi
2871 
2872 // }}}2
2873 // rebind_simd {{{2
2874 template <typename _Tp, typename _V, typename = void>
2875  struct rebind_simd;
2876 
2877 template <typename _Tp, typename _Up, typename _Abi>
2878  struct rebind_simd<
2879  _Tp, simd<_Up, _Abi>,
2880  void_t<simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>>
2881  {
2882  using type
2883  = simd<_Tp, simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>;
2884  };
2885 
2886 template <typename _Tp, typename _Up, typename _Abi>
2887  struct rebind_simd<
2888  _Tp, simd_mask<_Up, _Abi>,
2889  void_t<simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>>
2890  {
2891  using type
2892  = simd_mask<_Tp, simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>;
2893  };
2894 
2895 template <typename _Tp, typename _V>
2896  using rebind_simd_t = typename rebind_simd<_Tp, _V>::type;
2897 
2898 // resize_simd {{{2
2899 template <int _Np, typename _V, typename = void>
2900  struct resize_simd;
2901 
2902 template <int _Np, typename _Tp, typename _Abi>
2903  struct resize_simd<_Np, simd<_Tp, _Abi>,
2904  void_t<simd_abi::deduce_t<_Tp, _Np, _Abi>>>
2905  { using type = simd<_Tp, simd_abi::deduce_t<_Tp, _Np, _Abi>>; };
2906 
2907 template <int _Np, typename _Tp, typename _Abi>
2908  struct resize_simd<_Np, simd_mask<_Tp, _Abi>,
2909  void_t<simd_abi::deduce_t<_Tp, _Np, _Abi>>>
2910  { using type = simd_mask<_Tp, simd_abi::deduce_t<_Tp, _Np, _Abi>>; };
2911 
2912 template <int _Np, typename _V>
2913  using resize_simd_t = typename resize_simd<_Np, _V>::type;
2914 
2915 // }}}2
2916 // memory_alignment {{{2
2917 template <typename _Tp, typename _Up = typename _Tp::value_type>
2918  struct memory_alignment
2919  : public _SizeConstant<vector_aligned_tag::_S_alignment<_Tp, _Up>> {};
2920 
2921 template <typename _Tp, typename _Up = typename _Tp::value_type>
2922  inline constexpr size_t memory_alignment_v = memory_alignment<_Tp, _Up>::value;
2923 
2924 // class template simd [simd] {{{1
2925 template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>>
2926  class simd;
2927 
2928 template <typename _Tp, typename _Abi>
2929  struct is_simd<simd<_Tp, _Abi>> : public true_type {};
2930 
2931 template <typename _Tp>
2932  using native_simd = simd<_Tp, simd_abi::native<_Tp>>;
2933 
2934 template <typename _Tp, int _Np>
2935  using fixed_size_simd = simd<_Tp, simd_abi::fixed_size<_Np>>;
2936 
2937 template <typename _Tp, size_t _Np>
2938  using __deduced_simd = simd<_Tp, simd_abi::deduce_t<_Tp, _Np>>;
2939 
2940 // class template simd_mask [simd_mask] {{{1
2941 template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>>
2942  class simd_mask;
2943 
2944 template <typename _Tp, typename _Abi>
2945  struct is_simd_mask<simd_mask<_Tp, _Abi>> : public true_type {};
2946 
2947 template <typename _Tp>
2948  using native_simd_mask = simd_mask<_Tp, simd_abi::native<_Tp>>;
2949 
2950 template <typename _Tp, int _Np>
2951  using fixed_size_simd_mask = simd_mask<_Tp, simd_abi::fixed_size<_Np>>;
2952 
2953 template <typename _Tp, size_t _Np>
2954  using __deduced_simd_mask = simd_mask<_Tp, simd_abi::deduce_t<_Tp, _Np>>;
2955 
2956 // casts [simd.casts] {{{1
2957 // static_simd_cast {{{2
2958 template <typename _Tp, typename _Up, typename _Ap, bool = is_simd_v<_Tp>,
2959  typename = void>
2960  struct __static_simd_cast_return_type;
2961 
2962 template <typename _Tp, typename _A0, typename _Up, typename _Ap>
2963  struct __static_simd_cast_return_type<simd_mask<_Tp, _A0>, _Up, _Ap, false,
2964  void>
2965  : __static_simd_cast_return_type<simd<_Tp, _A0>, _Up, _Ap> {};
2966 
2967 template <typename _Tp, typename _Up, typename _Ap>
2968  struct __static_simd_cast_return_type<
2969  _Tp, _Up, _Ap, true, enable_if_t<_Tp::size() == simd_size_v<_Up, _Ap>>>
2970  { using type = _Tp; };
2971 
2972 template <typename _Tp, typename _Ap>
2973  struct __static_simd_cast_return_type<_Tp, _Tp, _Ap, false,
2974 #ifdef _GLIBCXX_SIMD_FIX_P2TS_ISSUE66
2975  enable_if_t<__is_vectorizable_v<_Tp>>
2976 #else
2977  void
2978 #endif
2979  >
2980  { using type = simd<_Tp, _Ap>; };
2981 
2982 template <typename _Tp, typename = void>
2983  struct __safe_make_signed { using type = _Tp;};
2984 
2985 template <typename _Tp>
2986  struct __safe_make_signed<_Tp, enable_if_t<is_integral_v<_Tp>>>
2987  {
2988  // the extra make_unsigned_t is because of PR85951
2989  using type = make_signed_t<make_unsigned_t<_Tp>>;
2990  };
2991 
2992 template <typename _Tp>
2993  using safe_make_signed_t = typename __safe_make_signed<_Tp>::type;
2994 
2995 template <typename _Tp, typename _Up, typename _Ap>
2996  struct __static_simd_cast_return_type<_Tp, _Up, _Ap, false,
2997 #ifdef _GLIBCXX_SIMD_FIX_P2TS_ISSUE66
2998  enable_if_t<__is_vectorizable_v<_Tp>>
2999 #else
3000  void
3001 #endif
3002  >
3003  {
3004  using type = conditional_t<
3005  (is_integral_v<_Up> && is_integral_v<_Tp> &&
3006 #ifndef _GLIBCXX_SIMD_FIX_P2TS_ISSUE65
3007  is_signed_v<_Up> != is_signed_v<_Tp> &&
3008 #endif
3009  is_same_v<safe_make_signed_t<_Up>, safe_make_signed_t<_Tp>>),
3010  simd<_Tp, _Ap>, fixed_size_simd<_Tp, simd_size_v<_Up, _Ap>>>;
3011  };
3012 
3013 template <typename _Tp, typename _Up, typename _Ap,
3014  typename _R
3015  = typename __static_simd_cast_return_type<_Tp, _Up, _Ap>::type>
3016  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _R
3017  static_simd_cast(const simd<_Up, _Ap>& __x)
3018  {
3019  if constexpr (is_same<_R, simd<_Up, _Ap>>::value)
3020  return __x;
3021  else
3022  {
3023  _SimdConverter<_Up, _Ap, typename _R::value_type, typename _R::abi_type>
3024  __c;
3025  return _R(__private_init, __c(__data(__x)));
3026  }
3027  }
3028 
3029 namespace __proposed {
3030 template <typename _Tp, typename _Up, typename _Ap,
3031  typename _R
3032  = typename __static_simd_cast_return_type<_Tp, _Up, _Ap>::type>
3033  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR typename _R::mask_type
3034  static_simd_cast(const simd_mask<_Up, _Ap>& __x)
3035  {
3036  using _RM = typename _R::mask_type;
3037  return {__private_init, _RM::abi_type::_MaskImpl::template _S_convert<
3038  typename _RM::simd_type::value_type>(__x)};
3039  }
3040 
3041 template <typename _To, typename _Up, typename _Abi>
3042  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
3043  _To
3044  simd_bit_cast(const simd<_Up, _Abi>& __x)
3045  {
3046  using _Tp = typename _To::value_type;
3047  using _ToMember = typename _SimdTraits<_Tp, typename _To::abi_type>::_SimdMember;
3048  using _From = simd<_Up, _Abi>;
3049  using _FromMember = typename _SimdTraits<_Up, _Abi>::_SimdMember;
3050  // with concepts, the following should be constraints
3051  static_assert(sizeof(_To) == sizeof(_From));
3052  static_assert(is_trivially_copyable_v<_Tp> && is_trivially_copyable_v<_Up>);
3053  static_assert(is_trivially_copyable_v<_ToMember> && is_trivially_copyable_v<_FromMember>);
3054 #if __has_builtin(__builtin_bit_cast)
3055  return {__private_init, __builtin_bit_cast(_ToMember, __data(__x))};
3056 #else
3057  return {__private_init, __bit_cast<_ToMember>(__data(__x))};
3058 #endif
3059  }
3060 
3061 template <typename _To, typename _Up, typename _Abi>
3062  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
3063  _To
3064  simd_bit_cast(const simd_mask<_Up, _Abi>& __x)
3065  {
3066  using _From = simd_mask<_Up, _Abi>;
3067  static_assert(sizeof(_To) == sizeof(_From));
3068  static_assert(is_trivially_copyable_v<_From>);
3069  // _To can be simd<T, A>, specifically simd<T, fixed_size<N>> in which case _To is not trivially
3070  // copyable.
3071  if constexpr (is_simd_v<_To>)
3072  {
3073  using _Tp = typename _To::value_type;
3074  using _ToMember = typename _SimdTraits<_Tp, typename _To::abi_type>::_SimdMember;
3075  static_assert(is_trivially_copyable_v<_ToMember>);
3076 #if __has_builtin(__builtin_bit_cast)
3077  return {__private_init, __builtin_bit_cast(_ToMember, __x)};
3078 #else
3079  return {__private_init, __bit_cast<_ToMember>(__x)};
3080 #endif
3081  }
3082  else
3083  {
3084  static_assert(is_trivially_copyable_v<_To>);
3085 #if __has_builtin(__builtin_bit_cast)
3086  return __builtin_bit_cast(_To, __x);
3087 #else
3088  return __bit_cast<_To>(__x);
3089 #endif
3090  }
3091  }
3092 } // namespace __proposed
3093 
3094 // simd_cast {{{2
3095 template <typename _Tp, typename _Up, typename _Ap,
3096  typename _To = __value_type_or_identity_t<_Tp>>
3097  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR auto
3098  simd_cast(const simd<_ValuePreserving<_Up, _To>, _Ap>& __x)
3099  -> decltype(static_simd_cast<_Tp>(__x))
3100  { return static_simd_cast<_Tp>(__x); }
3101 
3102 namespace __proposed {
3103 template <typename _Tp, typename _Up, typename _Ap,
3104  typename _To = __value_type_or_identity_t<_Tp>>
3105  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR auto
3106  simd_cast(const simd_mask<_ValuePreserving<_Up, _To>, _Ap>& __x)
3107  -> decltype(static_simd_cast<_Tp>(__x))
3108  { return static_simd_cast<_Tp>(__x); }
3109 } // namespace __proposed
3110 
3111 // }}}2
3112 // resizing_simd_cast {{{
3113 namespace __proposed {
3114 /* Proposed spec:
3115 
3116 template <class T, class U, class Abi>
3117 T resizing_simd_cast(const simd<U, Abi>& x)
3118 
3119 p1 Constraints:
3120  - is_simd_v<T> is true and
3121  - T::value_type is the same type as U
3122 
3123 p2 Returns:
3124  A simd object with the i^th element initialized to x[i] for all i in the
3125  range of [0, min(T::size(), simd_size_v<U, Abi>)). If T::size() is larger
3126  than simd_size_v<U, Abi>, the remaining elements are value-initialized.
3127 
3128 template <class T, class U, class Abi>
3129 T resizing_simd_cast(const simd_mask<U, Abi>& x)
3130 
3131 p1 Constraints: is_simd_mask_v<T> is true
3132 
3133 p2 Returns:
3134  A simd_mask object with the i^th element initialized to x[i] for all i in
3135 the range of [0, min(T::size(), simd_size_v<U, Abi>)). If T::size() is larger
3136  than simd_size_v<U, Abi>, the remaining elements are initialized to false.
3137 
3138  */
3139 
3140 template <typename _Tp, typename _Up, typename _Ap>
3141  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR enable_if_t<
3142  conjunction_v<is_simd<_Tp>, is_same<typename _Tp::value_type, _Up>>, _Tp>
3143  resizing_simd_cast(const simd<_Up, _Ap>& __x)
3144  {
3145  if constexpr (is_same_v<typename _Tp::abi_type, _Ap>)
3146  return __x;
3147  else if constexpr (simd_size_v<_Up, _Ap> == 1)
3148  {
3149  _Tp __r{};
3150  __r[0] = __x[0];
3151  return __r;
3152  }
3153  else if constexpr (_Tp::size() == 1)
3154  return __x[0];
3155  else if constexpr (sizeof(_Tp) == sizeof(__x)
3156  && !__is_fixed_size_abi_v<_Ap>)
3157  return {__private_init,
3158  __vector_bitcast<typename _Tp::value_type, _Tp::size()>(
3159  _Ap::_S_masked(__data(__x))._M_data)};
3160  else
3161  {
3162  _Tp __r{};
3163  __builtin_memcpy(&__data(__r), &__data(__x),
3164  sizeof(_Up)
3165  * std::min(_Tp::size(), simd_size_v<_Up, _Ap>));
3166  return __r;
3167  }
3168  }
3169 
3170 template <typename _Tp, typename _Up, typename _Ap>
3171  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
3172  enable_if_t<is_simd_mask_v<_Tp>, _Tp>
3173  resizing_simd_cast(const simd_mask<_Up, _Ap>& __x)
3174  {
3175  return {__private_init, _Tp::abi_type::_MaskImpl::template _S_convert<
3176  typename _Tp::simd_type::value_type>(__x)};
3177  }
3178 } // namespace __proposed
3179 
3180 // }}}
3181 // to_fixed_size {{{2
3182 template <typename _Tp, int _Np>
3183  _GLIBCXX_SIMD_INTRINSIC fixed_size_simd<_Tp, _Np>
3184  to_fixed_size(const fixed_size_simd<_Tp, _Np>& __x)
3185  { return __x; }
3186 
3187 template <typename _Tp, int _Np>
3188  _GLIBCXX_SIMD_INTRINSIC fixed_size_simd_mask<_Tp, _Np>
3189  to_fixed_size(const fixed_size_simd_mask<_Tp, _Np>& __x)
3190  { return __x; }
3191 
3192 template <typename _Tp, typename _Ap>
3193  _GLIBCXX_SIMD_INTRINSIC auto
3194  to_fixed_size(const simd<_Tp, _Ap>& __x)
3195  {
3196  return simd<_Tp, simd_abi::fixed_size<simd_size_v<_Tp, _Ap>>>([&__x](
3197  auto __i) constexpr { return __x[__i]; });
3198  }
3199 
3200 template <typename _Tp, typename _Ap>
3201  _GLIBCXX_SIMD_INTRINSIC auto
3202  to_fixed_size(const simd_mask<_Tp, _Ap>& __x)
3203  {
3204  constexpr int _Np = simd_mask<_Tp, _Ap>::size();
3205  fixed_size_simd_mask<_Tp, _Np> __r;
3206  __execute_n_times<_Np>([&](auto __i) constexpr { __r[__i] = __x[__i]; });
3207  return __r;
3208  }
3209 
3210 // to_native {{{2
3211 template <typename _Tp, int _Np>
3212  _GLIBCXX_SIMD_INTRINSIC
3213  enable_if_t<(_Np == native_simd<_Tp>::size()), native_simd<_Tp>>
3214  to_native(const fixed_size_simd<_Tp, _Np>& __x)
3215  {
3216  alignas(memory_alignment_v<native_simd<_Tp>>) _Tp __mem[_Np];
3217  __x.copy_to(__mem, vector_aligned);
3218  return {__mem, vector_aligned};
3219  }
3220 
3221 template <typename _Tp, size_t _Np>
3222  _GLIBCXX_SIMD_INTRINSIC
3223  enable_if_t<(_Np == native_simd_mask<_Tp>::size()), native_simd_mask<_Tp>>
3224  to_native(const fixed_size_simd_mask<_Tp, _Np>& __x)
3225  {
3226  return native_simd_mask<_Tp>([&](auto __i) constexpr { return __x[__i]; });
3227  }
3228 
3229 // to_compatible {{{2
3230 template <typename _Tp, size_t _Np>
3231  _GLIBCXX_SIMD_INTRINSIC enable_if_t<(_Np == simd<_Tp>::size()), simd<_Tp>>
3232  to_compatible(const simd<_Tp, simd_abi::fixed_size<_Np>>& __x)
3233  {
3234  alignas(memory_alignment_v<simd<_Tp>>) _Tp __mem[_Np];
3235  __x.copy_to(__mem, vector_aligned);
3236  return {__mem, vector_aligned};
3237  }
3238 
3239 template <typename _Tp, size_t _Np>
3240  _GLIBCXX_SIMD_INTRINSIC
3241  enable_if_t<(_Np == simd_mask<_Tp>::size()), simd_mask<_Tp>>
3242  to_compatible(const simd_mask<_Tp, simd_abi::fixed_size<_Np>>& __x)
3243  { return simd_mask<_Tp>([&](auto __i) constexpr { return __x[__i]; }); }
3244 
3245 // masked assignment [simd_mask.where] {{{1
3246 
3247 // where_expression {{{1
3248 // const_where_expression<M, T> {{{2
3249 template <typename _M, typename _Tp>
3250  class const_where_expression
3251  {
3252  using _V = _Tp;
3253  static_assert(is_same_v<_V, __remove_cvref_t<_Tp>>);
3254 
3255  struct _Wrapper { using value_type = _V; };
3256 
3257  protected:
3258  using _Impl = typename _V::_Impl;
3259 
3260  using value_type =
3261  typename conditional_t<is_arithmetic_v<_V>, _Wrapper, _V>::value_type;
3262 
3263  _GLIBCXX_SIMD_INTRINSIC friend const _M&
3264  __get_mask(const const_where_expression& __x)
3265  { return __x._M_k; }
3266 
3267  _GLIBCXX_SIMD_INTRINSIC friend const _Tp&
3268  __get_lvalue(const const_where_expression& __x)
3269  { return __x._M_value; }
3270 
3271  const _M& _M_k;
3272  _Tp& _M_value;
3273 
3274  public:
3275  const_where_expression(const const_where_expression&) = delete;
3276  const_where_expression& operator=(const const_where_expression&) = delete;
3277 
3278  _GLIBCXX_SIMD_INTRINSIC const_where_expression(const _M& __kk, const _Tp& dd)
3279  : _M_k(__kk), _M_value(const_cast<_Tp&>(dd)) {}
3280 
3281  _GLIBCXX_SIMD_INTRINSIC _V
3282  operator-() const&&
3283  {
3284  return {__private_init,
3285  _Impl::template _S_masked_unary<negate>(__data(_M_k),
3286  __data(_M_value))};
3287  }
3288 
3289  template <typename _Up, typename _Flags>
3290  [[nodiscard]] _GLIBCXX_SIMD_INTRINSIC _V
3291  copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _Flags) const&&
3292  {
3293  return {__private_init,
3294  _Impl::_S_masked_load(__data(_M_value), __data(_M_k),
3295  _Flags::template _S_apply<_V>(__mem))};
3296  }
3297 
3298  template <typename _Up, typename _Flags>
3299  _GLIBCXX_SIMD_INTRINSIC void
3300  copy_to(_LoadStorePtr<_Up, value_type>* __mem, _Flags) const&&
3301  {
3302  _Impl::_S_masked_store(__data(_M_value),
3303  _Flags::template _S_apply<_V>(__mem),
3304  __data(_M_k));
3305  }
3306  };
3307 
3308 // const_where_expression<bool, T> {{{2
3309 template <typename _Tp>
3310  class const_where_expression<bool, _Tp>
3311  {
3312  using _M = bool;
3313  using _V = _Tp;
3314 
3315  static_assert(is_same_v<_V, __remove_cvref_t<_Tp>>);
3316 
3317  struct _Wrapper { using value_type = _V; };
3318 
3319  protected:
3320  using value_type =
3321  typename conditional_t<is_arithmetic_v<_V>, _Wrapper, _V>::value_type;
3322 
3323  _GLIBCXX_SIMD_INTRINSIC friend const _M&
3324  __get_mask(const const_where_expression& __x)
3325  { return __x._M_k; }
3326 
3327  _GLIBCXX_SIMD_INTRINSIC friend const _Tp&
3328  __get_lvalue(const const_where_expression& __x)
3329  { return __x._M_value; }
3330 
3331  const bool _M_k;
3332  _Tp& _M_value;
3333 
3334  public:
3335  const_where_expression(const const_where_expression&) = delete;
3336  const_where_expression& operator=(const const_where_expression&) = delete;
3337 
3338  _GLIBCXX_SIMD_INTRINSIC const_where_expression(const bool __kk, const _Tp& dd)
3339  : _M_k(__kk), _M_value(const_cast<_Tp&>(dd)) {}
3340 
3341  _GLIBCXX_SIMD_INTRINSIC _V operator-() const&&
3342  { return _M_k ? -_M_value : _M_value; }
3343 
3344  template <typename _Up, typename _Flags>
3345  [[nodiscard]] _GLIBCXX_SIMD_INTRINSIC _V
3346  copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _Flags) const&&
3347  { return _M_k ? static_cast<_V>(__mem[0]) : _M_value; }
3348 
3349  template <typename _Up, typename _Flags>
3350  _GLIBCXX_SIMD_INTRINSIC void
3351  copy_to(_LoadStorePtr<_Up, value_type>* __mem, _Flags) const&&
3352  {
3353  if (_M_k)
3354  __mem[0] = _M_value;
3355  }
3356  };
3357 
3358 // where_expression<M, T> {{{2
3359 template <typename _M, typename _Tp>
3360  class where_expression : public const_where_expression<_M, _Tp>
3361  {
3362  using _Impl = typename const_where_expression<_M, _Tp>::_Impl;
3363 
3364  static_assert(!is_const<_Tp>::value,
3365  "where_expression may only be instantiated with __a non-const "
3366  "_Tp parameter");
3367 
3368  using typename const_where_expression<_M, _Tp>::value_type;
3369  using const_where_expression<_M, _Tp>::_M_k;
3370  using const_where_expression<_M, _Tp>::_M_value;
3371 
3372  static_assert(
3373  is_same<typename _M::abi_type, typename _Tp::abi_type>::value, "");
3374  static_assert(_M::size() == _Tp::size(), "");
3375 
3376  _GLIBCXX_SIMD_INTRINSIC friend _Tp& __get_lvalue(where_expression& __x)
3377  { return __x._M_value; }
3378 
3379  public:
3380  where_expression(const where_expression&) = delete;
3381  where_expression& operator=(const where_expression&) = delete;
3382 
3383  _GLIBCXX_SIMD_INTRINSIC where_expression(const _M& __kk, _Tp& dd)
3384  : const_where_expression<_M, _Tp>(__kk, dd) {}
3385 
3386  template <typename _Up>
3387  _GLIBCXX_SIMD_INTRINSIC void operator=(_Up&& __x) &&
3388  {
3389  _Impl::_S_masked_assign(__data(_M_k), __data(_M_value),
3390  __to_value_type_or_member_type<_Tp>(
3391  static_cast<_Up&&>(__x)));
3392  }
3393 
3394 #define _GLIBCXX_SIMD_OP_(__op, __name) \
3395  template <typename _Up> \
3396  _GLIBCXX_SIMD_INTRINSIC void operator __op##=(_Up&& __x)&& \
3397  { \
3398  _Impl::template _S_masked_cassign( \
3399  __data(_M_k), __data(_M_value), \
3400  __to_value_type_or_member_type<_Tp>(static_cast<_Up&&>(__x)), \
3401  [](auto __impl, auto __lhs, auto __rhs) constexpr { \
3402  return __impl.__name(__lhs, __rhs); \
3403  }); \
3404  } \
3405  static_assert(true)
3406  _GLIBCXX_SIMD_OP_(+, _S_plus);
3407  _GLIBCXX_SIMD_OP_(-, _S_minus);
3408  _GLIBCXX_SIMD_OP_(*, _S_multiplies);
3409  _GLIBCXX_SIMD_OP_(/, _S_divides);
3410  _GLIBCXX_SIMD_OP_(%, _S_modulus);
3411  _GLIBCXX_SIMD_OP_(&, _S_bit_and);
3412  _GLIBCXX_SIMD_OP_(|, _S_bit_or);
3413  _GLIBCXX_SIMD_OP_(^, _S_bit_xor);
3414  _GLIBCXX_SIMD_OP_(<<, _S_shift_left);
3415  _GLIBCXX_SIMD_OP_(>>, _S_shift_right);
3416 #undef _GLIBCXX_SIMD_OP_
3417 
3418  _GLIBCXX_SIMD_INTRINSIC void operator++() &&
3419  {
3420  __data(_M_value)
3421  = _Impl::template _S_masked_unary<__increment>(__data(_M_k),
3422  __data(_M_value));
3423  }
3424 
3425  _GLIBCXX_SIMD_INTRINSIC void operator++(int) &&
3426  {
3427  __data(_M_value)
3428  = _Impl::template _S_masked_unary<__increment>(__data(_M_k),
3429  __data(_M_value));
3430  }
3431 
3432  _GLIBCXX_SIMD_INTRINSIC void operator--() &&
3433  {
3434  __data(_M_value)
3435  = _Impl::template _S_masked_unary<__decrement>(__data(_M_k),
3436  __data(_M_value));
3437  }
3438 
3439  _GLIBCXX_SIMD_INTRINSIC void operator--(int) &&
3440  {
3441  __data(_M_value)
3442  = _Impl::template _S_masked_unary<__decrement>(__data(_M_k),
3443  __data(_M_value));
3444  }
3445 
3446  // intentionally hides const_where_expression::copy_from
3447  template <typename _Up, typename _Flags>
3448  _GLIBCXX_SIMD_INTRINSIC void
3449  copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _Flags) &&
3450  {
3451  __data(_M_value)
3452  = _Impl::_S_masked_load(__data(_M_value), __data(_M_k),
3453  _Flags::template _S_apply<_Tp>(__mem));
3454  }
3455  };
3456 
3457 // where_expression<bool, T> {{{2
3458 template <typename _Tp>
3459  class where_expression<bool, _Tp> : public const_where_expression<bool, _Tp>
3460  {
3461  using _M = bool;
3462  using typename const_where_expression<_M, _Tp>::value_type;
3463  using const_where_expression<_M, _Tp>::_M_k;
3464  using const_where_expression<_M, _Tp>::_M_value;
3465 
3466  public:
3467  where_expression(const where_expression&) = delete;
3468  where_expression& operator=(const where_expression&) = delete;
3469 
3470  _GLIBCXX_SIMD_INTRINSIC where_expression(const _M& __kk, _Tp& dd)
3471  : const_where_expression<_M, _Tp>(__kk, dd) {}
3472 
3473 #define _GLIBCXX_SIMD_OP_(__op) \
3474  template <typename _Up> \
3475  _GLIBCXX_SIMD_INTRINSIC void operator __op(_Up&& __x)&& \
3476  { if (_M_k) _M_value __op static_cast<_Up&&>(__x); }
3477 
3478  _GLIBCXX_SIMD_OP_(=)
3479  _GLIBCXX_SIMD_OP_(+=)
3480  _GLIBCXX_SIMD_OP_(-=)
3481  _GLIBCXX_SIMD_OP_(*=)
3482  _GLIBCXX_SIMD_OP_(/=)
3483  _GLIBCXX_SIMD_OP_(%=)
3484  _GLIBCXX_SIMD_OP_(&=)
3485  _GLIBCXX_SIMD_OP_(|=)
3486  _GLIBCXX_SIMD_OP_(^=)
3487  _GLIBCXX_SIMD_OP_(<<=)
3488  _GLIBCXX_SIMD_OP_(>>=)
3489  #undef _GLIBCXX_SIMD_OP_
3490 
3491  _GLIBCXX_SIMD_INTRINSIC void operator++() &&
3492  { if (_M_k) ++_M_value; }
3493 
3494  _GLIBCXX_SIMD_INTRINSIC void operator++(int) &&
3495  { if (_M_k) ++_M_value; }
3496 
3497  _GLIBCXX_SIMD_INTRINSIC void operator--() &&
3498  { if (_M_k) --_M_value; }
3499 
3500  _GLIBCXX_SIMD_INTRINSIC void operator--(int) &&
3501  { if (_M_k) --_M_value; }
3502 
3503  // intentionally hides const_where_expression::copy_from
3504  template <typename _Up, typename _Flags>
3505  _GLIBCXX_SIMD_INTRINSIC void
3506  copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _Flags) &&
3507  { if (_M_k) _M_value = __mem[0]; }
3508  };
3509 
3510 // where {{{1
3511 template <typename _Tp, typename _Ap>
3512  _GLIBCXX_SIMD_INTRINSIC where_expression<simd_mask<_Tp, _Ap>, simd<_Tp, _Ap>>
3513  where(const typename simd<_Tp, _Ap>::mask_type& __k, simd<_Tp, _Ap>& __value)
3514  { return {__k, __value}; }
3515 
3516 template <typename _Tp, typename _Ap>
3517  _GLIBCXX_SIMD_INTRINSIC
3518  const_where_expression<simd_mask<_Tp, _Ap>, simd<_Tp, _Ap>>
3519  where(const typename simd<_Tp, _Ap>::mask_type& __k,
3520  const simd<_Tp, _Ap>& __value)
3521  { return {__k, __value}; }
3522 
3523 template <typename _Tp, typename _Ap>
3524  _GLIBCXX_SIMD_INTRINSIC
3525  where_expression<simd_mask<_Tp, _Ap>, simd_mask<_Tp, _Ap>>
3526  where(const remove_const_t<simd_mask<_Tp, _Ap>>& __k,
3527  simd_mask<_Tp, _Ap>& __value)
3528  { return {__k, __value}; }
3529 
3530 template <typename _Tp, typename _Ap>
3531  _GLIBCXX_SIMD_INTRINSIC
3532  const_where_expression<simd_mask<_Tp, _Ap>, simd_mask<_Tp, _Ap>>
3533  where(const remove_const_t<simd_mask<_Tp, _Ap>>& __k,
3534  const simd_mask<_Tp, _Ap>& __value)
3535  { return {__k, __value}; }
3536 
3537 template <typename _Tp>
3538  _GLIBCXX_SIMD_INTRINSIC where_expression<bool, _Tp>
3539  where(_ExactBool __k, _Tp& __value)
3540  { return {__k, __value}; }
3541 
3542 template <typename _Tp>
3543  _GLIBCXX_SIMD_INTRINSIC const_where_expression<bool, _Tp>
3544  where(_ExactBool __k, const _Tp& __value)
3545  { return {__k, __value}; }
3546 
3547  template <typename _Tp, typename _Ap>
3548  void where(bool __k, simd<_Tp, _Ap>& __value) = delete;
3549 
3550  template <typename _Tp, typename _Ap>
3551  void where(bool __k, const simd<_Tp, _Ap>& __value) = delete;
3552 
3553 // proposed mask iterations {{{1
3554 namespace __proposed {
3555 template <size_t _Np>
3556  class where_range
3557  {
3558  const bitset<_Np> __bits;
3559 
3560  public:
3561  where_range(bitset<_Np> __b) : __bits(__b) {}
3562 
3563  class iterator
3564  {
3565  size_t __mask;
3566  size_t __bit;
3567 
3568  _GLIBCXX_SIMD_INTRINSIC void __next_bit()
3569  { __bit = __builtin_ctzl(__mask); }
3570 
3571  _GLIBCXX_SIMD_INTRINSIC void __reset_lsb()
3572  {
3573  // 01100100 - 1 = 01100011
3574  __mask &= (__mask - 1);
3575  // __asm__("btr %1,%0" : "+r"(__mask) : "r"(__bit));
3576  }
3577 
3578  public:
3579  iterator(decltype(__mask) __m) : __mask(__m) { __next_bit(); }
3580  iterator(const iterator&) = default;
3581  iterator(iterator&&) = default;
3582 
3583  _GLIBCXX_SIMD_ALWAYS_INLINE size_t operator->() const
3584  { return __bit; }
3585 
3586  _GLIBCXX_SIMD_ALWAYS_INLINE size_t operator*() const
3587  { return __bit; }
3588 
3589  _GLIBCXX_SIMD_ALWAYS_INLINE iterator& operator++()
3590  {
3591  __reset_lsb();
3592  __next_bit();
3593  return *this;
3594  }
3595 
3596  _GLIBCXX_SIMD_ALWAYS_INLINE iterator operator++(int)
3597  {
3598  iterator __tmp = *this;
3599  __reset_lsb();
3600  __next_bit();
3601  return __tmp;
3602  }
3603 
3604  _GLIBCXX_SIMD_ALWAYS_INLINE bool operator==(const iterator& __rhs) const
3605  { return __mask == __rhs.__mask; }
3606 
3607  _GLIBCXX_SIMD_ALWAYS_INLINE bool operator!=(const iterator& __rhs) const
3608  { return __mask != __rhs.__mask; }
3609  };
3610 
3611  iterator begin() const
3612  { return __bits.to_ullong(); }
3613 
3614  iterator end() const
3615  { return 0; }
3616  };
3617 
3618 template <typename _Tp, typename _Ap>
3619  where_range<simd_size_v<_Tp, _Ap>>
3620  where(const simd_mask<_Tp, _Ap>& __k)
3621  { return __k.__to_bitset(); }
3622 
3623 } // namespace __proposed
3624 
3625 // }}}1
3626 // reductions [simd.reductions] {{{1
3627 template <typename _Tp, typename _Abi, typename _BinaryOperation = plus<>>
3628  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _Tp
3629  reduce(const simd<_Tp, _Abi>& __v,
3630  _BinaryOperation __binary_op = _BinaryOperation())
3631  { return _Abi::_SimdImpl::_S_reduce(__v, __binary_op); }
3632 
3633 template <typename _M, typename _V, typename _BinaryOperation = plus<>>
3634  _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3635  reduce(const const_where_expression<_M, _V>& __x,
3636  typename _V::value_type __identity_element,
3637  _BinaryOperation __binary_op)
3638  {
3639  if (__builtin_expect(none_of(__get_mask(__x)), false))
3640  return __identity_element;
3641 
3642  _V __tmp = __identity_element;
3643  _V::_Impl::_S_masked_assign(__data(__get_mask(__x)), __data(__tmp),
3644  __data(__get_lvalue(__x)));
3645  return reduce(__tmp, __binary_op);
3646  }
3647 
3648 template <typename _M, typename _V>
3649  _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3650  reduce(const const_where_expression<_M, _V>& __x, plus<> __binary_op = {})
3651  { return reduce(__x, 0, __binary_op); }
3652 
3653 template <typename _M, typename _V>
3654  _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3655  reduce(const const_where_expression<_M, _V>& __x, multiplies<> __binary_op)
3656  { return reduce(__x, 1, __binary_op); }
3657 
3658 template <typename _M, typename _V>
3659  _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3660  reduce(const const_where_expression<_M, _V>& __x, bit_and<> __binary_op)
3661  { return reduce(__x, ~typename _V::value_type(), __binary_op); }
3662 
3663 template <typename _M, typename _V>
3664  _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3665  reduce(const const_where_expression<_M, _V>& __x, bit_or<> __binary_op)
3666  { return reduce(__x, 0, __binary_op); }
3667 
3668 template <typename _M, typename _V>
3669  _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3670  reduce(const const_where_expression<_M, _V>& __x, bit_xor<> __binary_op)
3671  { return reduce(__x, 0, __binary_op); }
3672 
3673 template <typename _Tp, typename _Abi>
3674  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _Tp
3675  hmin(const simd<_Tp, _Abi>& __v) noexcept
3676  {
3677  return _Abi::_SimdImpl::_S_reduce(__v, __detail::_Minimum());
3678  }
3679 
3680 template <typename _Tp, typename _Abi>
3681  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _Tp
3682  hmax(const simd<_Tp, _Abi>& __v) noexcept
3683  {
3684  return _Abi::_SimdImpl::_S_reduce(__v, __detail::_Maximum());
3685  }
3686 
3687 template <typename _M, typename _V>
3688  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
3689  typename _V::value_type
3690  hmin(const const_where_expression<_M, _V>& __x) noexcept
3691  {
3692  using _Tp = typename _V::value_type;
3693  constexpr _Tp __id_elem =
3694 #ifdef __FINITE_MATH_ONLY__
3695  __finite_max_v<_Tp>;
3696 #else
3697  __value_or<__infinity, _Tp>(__finite_max_v<_Tp>);
3698 #endif
3699  _V __tmp = __id_elem;
3700  _V::_Impl::_S_masked_assign(__data(__get_mask(__x)), __data(__tmp),
3701  __data(__get_lvalue(__x)));
3702  return _V::abi_type::_SimdImpl::_S_reduce(__tmp, __detail::_Minimum());
3703  }
3704 
3705 template <typename _M, typename _V>
3706  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
3707  typename _V::value_type
3708  hmax(const const_where_expression<_M, _V>& __x) noexcept
3709  {
3710  using _Tp = typename _V::value_type;
3711  constexpr _Tp __id_elem =
3712 #ifdef __FINITE_MATH_ONLY__
3713  __finite_min_v<_Tp>;
3714 #else
3715  [] {
3716  if constexpr (__value_exists_v<__infinity, _Tp>)
3717  return -__infinity_v<_Tp>;
3718  else
3719  return __finite_min_v<_Tp>;
3720  }();
3721 #endif
3722  _V __tmp = __id_elem;
3723  _V::_Impl::_S_masked_assign(__data(__get_mask(__x)), __data(__tmp),
3724  __data(__get_lvalue(__x)));
3725  return _V::abi_type::_SimdImpl::_S_reduce(__tmp, __detail::_Maximum());
3726  }
3727 
3728 // }}}1
3729 // algorithms [simd.alg] {{{
3730 template <typename _Tp, typename _Ap>
3731  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
3732  min(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
3733  { return {__private_init, _Ap::_SimdImpl::_S_min(__data(__a), __data(__b))}; }
3734 
3735 template <typename _Tp, typename _Ap>
3736  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
3737  max(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
3738  { return {__private_init, _Ap::_SimdImpl::_S_max(__data(__a), __data(__b))}; }
3739 
3740 template <typename _Tp, typename _Ap>
3741  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
3742  pair<simd<_Tp, _Ap>, simd<_Tp, _Ap>>
3743  minmax(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
3744  {
3745  const auto pair_of_members
3746  = _Ap::_SimdImpl::_S_minmax(__data(__a), __data(__b));
3747  return {simd<_Tp, _Ap>(__private_init, pair_of_members.first),
3748  simd<_Tp, _Ap>(__private_init, pair_of_members.second)};
3749  }
3750 
3751 template <typename _Tp, typename _Ap>
3752  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
3753  clamp(const simd<_Tp, _Ap>& __v, const simd<_Tp, _Ap>& __lo,
3754  const simd<_Tp, _Ap>& __hi)
3755  {
3756  using _Impl = typename _Ap::_SimdImpl;
3757  return {__private_init,
3758  _Impl::_S_min(__data(__hi),
3759  _Impl::_S_max(__data(__lo), __data(__v)))};
3760  }
3761 
3762 // }}}
3763 
3764 template <size_t... _Sizes, typename _Tp, typename _Ap,
3765  typename = enable_if_t<((_Sizes + ...) == simd<_Tp, _Ap>::size())>>
3766  inline tuple<simd<_Tp, simd_abi::deduce_t<_Tp, _Sizes>>...>
3767  split(const simd<_Tp, _Ap>&);
3768 
3769 // __extract_part {{{
3770 template <int _Index, int _Total, int _Combine = 1, typename _Tp, size_t _Np>
3771  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_CONST
3772  _SimdWrapper<_Tp, _Np / _Total * _Combine>
3773  __extract_part(const _SimdWrapper<_Tp, _Np> __x);
3774 
3775 template <int Index, int Parts, int _Combine = 1, typename _Tp, typename _A0,
3776  typename... _As>
3777  _GLIBCXX_SIMD_INTRINSIC auto
3778  __extract_part(const _SimdTuple<_Tp, _A0, _As...>& __x);
3779 
3780 // }}}
3781 // _SizeList {{{
3782 template <size_t _V0, size_t... _Values>
3783  struct _SizeList
3784  {
3785  template <size_t _I>
3786  static constexpr size_t _S_at(_SizeConstant<_I> = {})
3787  {
3788  if constexpr (_I == 0)
3789  return _V0;
3790  else
3791  return _SizeList<_Values...>::template _S_at<_I - 1>();
3792  }
3793 
3794  template <size_t _I>
3795  static constexpr auto _S_before(_SizeConstant<_I> = {})
3796  {
3797  if constexpr (_I == 0)
3798  return _SizeConstant<0>();
3799  else
3800  return _SizeConstant<
3801  _V0 + _SizeList<_Values...>::template _S_before<_I - 1>()>();
3802  }
3803 
3804  template <size_t _Np>
3805  static constexpr auto _S_pop_front(_SizeConstant<_Np> = {})
3806  {
3807  if constexpr (_Np == 0)
3808  return _SizeList();
3809  else
3810  return _SizeList<_Values...>::template _S_pop_front<_Np - 1>();
3811  }
3812  };
3813 
3814 // }}}
3815 // __extract_center {{{
3816 template <typename _Tp, size_t _Np>
3817  _GLIBCXX_SIMD_INTRINSIC _SimdWrapper<_Tp, _Np / 2>
3818  __extract_center(_SimdWrapper<_Tp, _Np> __x)
3819  {
3820  static_assert(_Np >= 4);
3821  static_assert(_Np % 4 == 0); // x0 - x1 - x2 - x3 -> return {x1, x2}
3822 #if _GLIBCXX_SIMD_X86INTRIN // {{{
3823  if constexpr (__have_avx512f && sizeof(_Tp) * _Np == 64)
3824  {
3825  const auto __intrin = __to_intrin(__x);
3826  if constexpr (is_integral_v<_Tp>)
3827  return __vector_bitcast<_Tp>(_mm512_castsi512_si256(
3828  _mm512_shuffle_i32x4(__intrin, __intrin,
3829  1 + 2 * 0x4 + 2 * 0x10 + 3 * 0x40)));
3830  else if constexpr (sizeof(_Tp) == 4)
3831  return __vector_bitcast<_Tp>(_mm512_castps512_ps256(
3832  _mm512_shuffle_f32x4(__intrin, __intrin,
3833  1 + 2 * 0x4 + 2 * 0x10 + 3 * 0x40)));
3834  else if constexpr (sizeof(_Tp) == 8)
3835  return __vector_bitcast<_Tp>(_mm512_castpd512_pd256(
3836  _mm512_shuffle_f64x2(__intrin, __intrin,
3837  1 + 2 * 0x4 + 2 * 0x10 + 3 * 0x40)));
3838  else
3839  __assert_unreachable<_Tp>();
3840  }
3841  else if constexpr (sizeof(_Tp) * _Np == 32 && is_floating_point_v<_Tp>)
3842  return __vector_bitcast<_Tp>(
3843  _mm_shuffle_pd(__lo128(__vector_bitcast<double>(__x)),
3844  __hi128(__vector_bitcast<double>(__x)), 1));
3845  else if constexpr (sizeof(__x) == 32 && sizeof(_Tp) * _Np <= 32)
3846  return __vector_bitcast<_Tp>(
3847  _mm_alignr_epi8(__hi128(__vector_bitcast<_LLong>(__x)),
3848  __lo128(__vector_bitcast<_LLong>(__x)),
3849  sizeof(_Tp) * _Np / 4));
3850  else
3851 #endif // _GLIBCXX_SIMD_X86INTRIN }}}
3852  {
3853  __vector_type_t<_Tp, _Np / 2> __r;
3854  __builtin_memcpy(&__r,
3855  reinterpret_cast<const char*>(&__x)
3856  + sizeof(_Tp) * _Np / 4,
3857  sizeof(_Tp) * _Np / 2);
3858  return __r;
3859  }
3860  }
3861 
3862 template <typename _Tp, typename _A0, typename... _As>
3863  _GLIBCXX_SIMD_INTRINSIC
3864  _SimdWrapper<_Tp, _SimdTuple<_Tp, _A0, _As...>::_S_size() / 2>
3865  __extract_center(const _SimdTuple<_Tp, _A0, _As...>& __x)
3866  {
3867  if constexpr (sizeof...(_As) == 0)
3868  return __extract_center(__x.first);
3869  else
3870  return __extract_part<1, 4, 2>(__x);
3871  }
3872 
3873 // }}}
3874 // __split_wrapper {{{
3875 template <size_t... _Sizes, typename _Tp, typename... _As>
3876  auto
3877  __split_wrapper(_SizeList<_Sizes...>, const _SimdTuple<_Tp, _As...>& __x)
3878  {
3879  return split<_Sizes...>(
3880  fixed_size_simd<_Tp, _SimdTuple<_Tp, _As...>::_S_size()>(__private_init,
3881  __x));
3882  }
3883 
3884 // }}}
3885 
3886 // split<simd>(simd) {{{
3887 template <typename _V, typename _Ap,
3888  size_t Parts = simd_size_v<typename _V::value_type, _Ap> / _V::size()>
3889  enable_if_t<simd_size_v<typename _V::value_type, _Ap> == Parts * _V::size()
3890  && is_simd_v<_V>, array<_V, Parts>>
3891  split(const simd<typename _V::value_type, _Ap>& __x)
3892  {
3893  using _Tp = typename _V::value_type;
3894  if constexpr (Parts == 1)
3895  {
3896  return {simd_cast<_V>(__x)};
3897  }
3898  else if (__x._M_is_constprop())
3899  {
3900  return __generate_from_n_evaluations<Parts, array<_V, Parts>>([&](
3901  auto __i) constexpr {
3902  return _V([&](auto __j) constexpr {
3903  return __x[__i * _V::size() + __j];
3904  });
3905  });
3906  }
3907  else if constexpr (
3908  __is_fixed_size_abi_v<_Ap>
3909  && (is_same_v<typename _V::abi_type, simd_abi::scalar>
3910  || (__is_fixed_size_abi_v<typename _V::abi_type>
3911  && sizeof(_V) == sizeof(_Tp) * _V::size() // _V doesn't have padding
3912  )))
3913  {
3914  // fixed_size -> fixed_size (w/o padding) or scalar
3915 #ifdef _GLIBCXX_SIMD_USE_ALIASING_LOADS
3916  const __may_alias<_Tp>* const __element_ptr
3917  = reinterpret_cast<const __may_alias<_Tp>*>(&__data(__x));
3918  return __generate_from_n_evaluations<Parts, array<_V, Parts>>([&](
3919  auto __i) constexpr {
3920  return _V(__element_ptr + __i * _V::size(), vector_aligned);
3921  });
3922 #else
3923  const auto& __xx = __data(__x);
3924  return __generate_from_n_evaluations<Parts, array<_V, Parts>>([&](
3925  auto __i) constexpr {
3926  [[maybe_unused]] constexpr size_t __offset
3927  = decltype(__i)::value * _V::size();
3928  return _V([&](auto __j) constexpr {
3929  constexpr _SizeConstant<__j + __offset> __k;
3930  return __xx[__k];
3931  });
3932  });
3933 #endif
3934  }
3935  else if constexpr (is_same_v<typename _V::abi_type, simd_abi::scalar>)
3936  {
3937  // normally memcpy should work here as well
3938  return __generate_from_n_evaluations<Parts, array<_V, Parts>>([&](
3939  auto __i) constexpr { return __x[__i]; });
3940  }
3941  else
3942  {
3943  return __generate_from_n_evaluations<Parts, array<_V, Parts>>([&](
3944  auto __i) constexpr {
3945  if constexpr (__is_fixed_size_abi_v<typename _V::abi_type>)
3946  return _V([&](auto __j) constexpr {
3947  return __x[__i * _V::size() + __j];
3948  });
3949  else
3950  return _V(__private_init,
3951  __extract_part<decltype(__i)::value, Parts>(__data(__x)));
3952  });
3953  }
3954  }
3955 
3956 // }}}
3957 // split<simd_mask>(simd_mask) {{{
3958 template <typename _V, typename _Ap,
3959  size_t _Parts
3960  = simd_size_v<typename _V::simd_type::value_type, _Ap> / _V::size()>
3961  enable_if_t<is_simd_mask_v<_V> && simd_size_v<typename
3962  _V::simd_type::value_type, _Ap> == _Parts * _V::size(), array<_V, _Parts>>
3963  split(const simd_mask<typename _V::simd_type::value_type, _Ap>& __x)
3964  {
3965  if constexpr (is_same_v<_Ap, typename _V::abi_type>)
3966  return {__x};
3967  else if constexpr (_Parts == 1)
3968  return {__proposed::static_simd_cast<_V>(__x)};
3969  else if constexpr (_Parts == 2 && __is_sse_abi<typename _V::abi_type>()
3970  && __is_avx_abi<_Ap>())
3971  return {_V(__private_init, __lo128(__data(__x))),
3972  _V(__private_init, __hi128(__data(__x)))};
3973  else if constexpr (_V::size() <= __CHAR_BIT__ * sizeof(_ULLong))
3974  {
3975  const bitset __bits = __x.__to_bitset();
3976  return __generate_from_n_evaluations<_Parts, array<_V, _Parts>>([&](
3977  auto __i) constexpr {
3978  constexpr size_t __offset = __i * _V::size();
3979  return _V(__bitset_init, (__bits >> __offset).to_ullong());
3980  });
3981  }
3982  else
3983  {
3984  return __generate_from_n_evaluations<_Parts, array<_V, _Parts>>([&](
3985  auto __i) constexpr {
3986  constexpr size_t __offset = __i * _V::size();
3987  return _V(
3988  __private_init, [&](auto __j) constexpr {
3989  return __x[__j + __offset];
3990  });
3991  });
3992  }
3993  }
3994 
3995 // }}}
3996 // split<_Sizes...>(simd) {{{
3997 template <size_t... _Sizes, typename _Tp, typename _Ap, typename>
3998  _GLIBCXX_SIMD_ALWAYS_INLINE
3999  tuple<simd<_Tp, simd_abi::deduce_t<_Tp, _Sizes>>...>
4000  split(const simd<_Tp, _Ap>& __x)
4001  {
4002  using _SL = _SizeList<_Sizes...>;
4003  using _Tuple = tuple<__deduced_simd<_Tp, _Sizes>...>;
4004  constexpr size_t _Np = simd_size_v<_Tp, _Ap>;
4005  constexpr size_t _N0 = _SL::template _S_at<0>();
4006  using _V = __deduced_simd<_Tp, _N0>;
4007 
4008  if (__x._M_is_constprop())
4009  return __generate_from_n_evaluations<sizeof...(_Sizes), _Tuple>([&](
4010  auto __i) constexpr {
4011  using _Vi = __deduced_simd<_Tp, _SL::_S_at(__i)>;
4012  constexpr size_t __offset = _SL::_S_before(__i);
4013  return _Vi([&](auto __j) constexpr { return __x[__offset + __j]; });
4014  });
4015  else if constexpr (_Np == _N0)
4016  {
4017  static_assert(sizeof...(_Sizes) == 1);
4018  return {simd_cast<_V>(__x)};
4019  }
4020  else if constexpr // split from fixed_size, such that __x::first.size == _N0
4021  (__is_fixed_size_abi_v<
4022  _Ap> && __fixed_size_storage_t<_Tp, _Np>::_S_first_size == _N0)
4023  {
4024  static_assert(
4025  !__is_fixed_size_abi_v<typename _V::abi_type>,
4026  "How can <_Tp, _Np> be __a single _SimdTuple entry but __a "
4027  "fixed_size_simd "
4028  "when deduced?");
4029  // extract first and recurse (__split_wrapper is needed to deduce a new
4030  // _Sizes pack)
4031  return tuple_cat(make_tuple(_V(__private_init, __data(__x).first)),
4032  __split_wrapper(_SL::template _S_pop_front<1>(),
4033  __data(__x).second));
4034  }
4035  else if constexpr ((!is_same_v<simd_abi::scalar,
4036  simd_abi::deduce_t<_Tp, _Sizes>> && ...)
4037  && (!__is_fixed_size_abi_v<
4038  simd_abi::deduce_t<_Tp, _Sizes>> && ...))
4039  {
4040  if constexpr (((_Sizes * 2 == _Np) && ...))
4041  return {{__private_init, __extract_part<0, 2>(__data(__x))},
4042  {__private_init, __extract_part<1, 2>(__data(__x))}};
4043  else if constexpr (is_same_v<_SizeList<_Sizes...>,
4044  _SizeList<_Np / 3, _Np / 3, _Np / 3>>)
4045  return {{__private_init, __extract_part<0, 3>(__data(__x))},
4046  {__private_init, __extract_part<1, 3>(__data(__x))},
4047  {__private_init, __extract_part<2, 3>(__data(__x))}};
4048  else if constexpr (is_same_v<_SizeList<_Sizes...>,
4049  _SizeList<2 * _Np / 3, _Np / 3>>)
4050  return {{__private_init, __extract_part<0, 3, 2>(__data(__x))},
4051  {__private_init, __extract_part<2, 3>(__data(__x))}};
4052  else if constexpr (is_same_v<_SizeList<_Sizes...>,
4053  _SizeList<_Np / 3, 2 * _Np / 3>>)
4054  return {{__private_init, __extract_part<0, 3>(__data(__x))},
4055  {__private_init, __extract_part<1, 3, 2>(__data(__x))}};
4056  else if constexpr (is_same_v<_SizeList<_Sizes...>,
4057  _SizeList<_Np / 2, _Np / 4, _Np / 4>>)
4058  return {{__private_init, __extract_part<0, 2>(__data(__x))},
4059  {__private_init, __extract_part<2, 4>(__data(__x))},
4060  {__private_init, __extract_part<3, 4>(__data(__x))}};
4061  else if constexpr (is_same_v<_SizeList<_Sizes...>,
4062  _SizeList<_Np / 4, _Np / 4, _Np / 2>>)
4063  return {{__private_init, __extract_part<0, 4>(__data(__x))},
4064  {__private_init, __extract_part<1, 4>(__data(__x))},
4065  {__private_init, __extract_part<1, 2>(__data(__x))}};
4066  else if constexpr (is_same_v<_SizeList<_Sizes...>,
4067  _SizeList<_Np / 4, _Np / 2, _Np / 4>>)
4068  return {{__private_init, __extract_part<0, 4>(__data(__x))},
4069  {__private_init, __extract_center(__data(__x))},
4070  {__private_init, __extract_part<3, 4>(__data(__x))}};
4071  else if constexpr (((_Sizes * 4 == _Np) && ...))
4072  return {{__private_init, __extract_part<0, 4>(__data(__x))},
4073  {__private_init, __extract_part<1, 4>(__data(__x))},
4074  {__private_init, __extract_part<2, 4>(__data(__x))},
4075  {__private_init, __extract_part<3, 4>(__data(__x))}};
4076  // else fall through
4077  }
4078 #ifdef _GLIBCXX_SIMD_USE_ALIASING_LOADS
4079  const __may_alias<_Tp>* const __element_ptr
4080  = reinterpret_cast<const __may_alias<_Tp>*>(&__x);
4081  return __generate_from_n_evaluations<sizeof...(_Sizes), _Tuple>([&](
4082  auto __i) constexpr {
4083  using _Vi = __deduced_simd<_Tp, _SL::_S_at(__i)>;
4084  constexpr size_t __offset = _SL::_S_before(__i);
4085  constexpr size_t __base_align = alignof(simd<_Tp, _Ap>);
4086  constexpr size_t __a
4087  = __base_align - ((__offset * sizeof(_Tp)) % __base_align);
4088  constexpr size_t __b = ((__a - 1) & __a) ^ __a;
4089  constexpr size_t __alignment = __b == 0 ? __a : __b;
4090  return _Vi(__element_ptr + __offset, overaligned<__alignment>);
4091  });
4092 #else
4093  return __generate_from_n_evaluations<sizeof...(_Sizes), _Tuple>([&](
4094  auto __i) constexpr {
4095  using _Vi = __deduced_simd<_Tp, _SL::_S_at(__i)>;
4096  const auto& __xx = __data(__x);
4097  using _Offset = decltype(_SL::_S_before(__i));
4098  return _Vi([&](auto __j) constexpr {
4099  constexpr _SizeConstant<_Offset::value + __j> __k;
4100  return __xx[__k];
4101  });
4102  });
4103 #endif
4104  }
4105 
4106 // }}}
4107 
4108 // __subscript_in_pack {{{
4109 template <size_t _I, typename _Tp, typename _Ap, typename... _As>
4110  _GLIBCXX_SIMD_INTRINSIC constexpr _Tp
4111  __subscript_in_pack(const simd<_Tp, _Ap>& __x, const simd<_Tp, _As>&... __xs)
4112  {
4113  if constexpr (_I < simd_size_v<_Tp, _Ap>)
4114  return __x[_I];
4115  else
4116  return __subscript_in_pack<_I - simd_size_v<_Tp, _Ap>>(__xs...);
4117  }
4118 
4119 // }}}
4120 // __store_pack_of_simd {{{
4121 template <typename _Tp, typename _A0, typename... _As>
4122  _GLIBCXX_SIMD_INTRINSIC void
4123  __store_pack_of_simd(char* __mem, const simd<_Tp, _A0>& __x0,
4124  const simd<_Tp, _As>&... __xs)
4125  {
4126  constexpr size_t __n_bytes = sizeof(_Tp) * simd_size_v<_Tp, _A0>;
4127  __builtin_memcpy(__mem, &__data(__x0), __n_bytes);
4128  if constexpr (sizeof...(__xs) > 0)
4129  __store_pack_of_simd(__mem + __n_bytes, __xs...);
4130  }
4131 
4132 // }}}
4133 // concat(simd...) {{{
4134 template <typename _Tp, typename... _As, typename = __detail::__odr_helper>
4135  inline _GLIBCXX_SIMD_CONSTEXPR
4136  simd<_Tp, simd_abi::deduce_t<_Tp, (simd_size_v<_Tp, _As> + ...)>>
4137  concat(const simd<_Tp, _As>&... __xs)
4138  {
4139  using _Rp = __deduced_simd<_Tp, (simd_size_v<_Tp, _As> + ...)>;
4140  if constexpr (sizeof...(__xs) == 1)
4141  return simd_cast<_Rp>(__xs...);
4142  else if ((... && __xs._M_is_constprop()))
4143  return simd<_Tp,
4144  simd_abi::deduce_t<_Tp, (simd_size_v<_Tp, _As> + ...)>>([&](
4145  auto __i) constexpr { return __subscript_in_pack<__i>(__xs...); });
4146  else
4147  {
4148  _Rp __r{};
4149  __store_pack_of_simd(reinterpret_cast<char*>(&__data(__r)), __xs...);
4150  return __r;
4151  }
4152  }
4153 
4154 // }}}
4155 // concat(array<simd>) {{{
4156 template <typename _Tp, typename _Abi, size_t _Np>
4157  _GLIBCXX_SIMD_ALWAYS_INLINE
4158  _GLIBCXX_SIMD_CONSTEXPR __deduced_simd<_Tp, simd_size_v<_Tp, _Abi> * _Np>
4159  concat(const array<simd<_Tp, _Abi>, _Np>& __x)
4160  {
4161  return __call_with_subscripts<_Np>(__x, [](const auto&... __xs) {
4162  return concat(__xs...);
4163  });
4164  }
4165 
4166 // }}}
4167 
4168 /// @cond undocumented
4169 // _SmartReference {{{
4170 template <typename _Up, typename _Accessor = _Up,
4171  typename _ValueType = typename _Up::value_type>
4172  class _SmartReference
4173  {
4174  friend _Accessor;
4175  int _M_index;
4176  _Up& _M_obj;
4177 
4178  _GLIBCXX_SIMD_INTRINSIC constexpr _ValueType _M_read() const noexcept
4179  {
4180  if constexpr (is_arithmetic_v<_Up>)
4181  return _M_obj;
4182  else
4183  return _M_obj[_M_index];
4184  }
4185 
4186  template <typename _Tp>
4187  _GLIBCXX_SIMD_INTRINSIC constexpr void _M_write(_Tp&& __x) const
4188  { _Accessor::_S_set(_M_obj, _M_index, static_cast<_Tp&&>(__x)); }
4189 
4190  public:
4191  _GLIBCXX_SIMD_INTRINSIC constexpr
4192  _SmartReference(_Up& __o, int __i) noexcept
4193  : _M_index(__i), _M_obj(__o) {}
4194 
4195  using value_type = _ValueType;
4196 
4197  _GLIBCXX_SIMD_INTRINSIC _SmartReference(const _SmartReference&) = delete;
4198 
4199  _GLIBCXX_SIMD_INTRINSIC constexpr operator value_type() const noexcept
4200  { return _M_read(); }
4201 
4202  template <typename _Tp,
4203  typename
4204  = _ValuePreservingOrInt<__remove_cvref_t<_Tp>, value_type>>
4205  _GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference operator=(_Tp&& __x) &&
4206  {
4207  _M_write(static_cast<_Tp&&>(__x));
4208  return {_M_obj, _M_index};
4209  }
4210 
4211 #define _GLIBCXX_SIMD_OP_(__op) \
4212  template <typename _Tp, \
4213  typename _TT \
4214  = decltype(declval<value_type>() __op declval<_Tp>()), \
4215  typename = _ValuePreservingOrInt<__remove_cvref_t<_Tp>, _TT>, \
4216  typename = _ValuePreservingOrInt<_TT, value_type>> \
4217  _GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference \
4218  operator __op##=(_Tp&& __x) && \
4219  { \
4220  const value_type& __lhs = _M_read(); \
4221  _M_write(__lhs __op __x); \
4222  return {_M_obj, _M_index}; \
4223  }
4224  _GLIBCXX_SIMD_ALL_ARITHMETICS(_GLIBCXX_SIMD_OP_);
4225  _GLIBCXX_SIMD_ALL_SHIFTS(_GLIBCXX_SIMD_OP_);
4226  _GLIBCXX_SIMD_ALL_BINARY(_GLIBCXX_SIMD_OP_);
4227 #undef _GLIBCXX_SIMD_OP_
4228 
4229  template <typename _Tp = void,
4230  typename
4231  = decltype(++declval<conditional_t<true, value_type, _Tp>&>())>
4232  _GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference operator++() &&
4233  {
4234  value_type __x = _M_read();
4235  _M_write(++__x);
4236  return {_M_obj, _M_index};
4237  }
4238 
4239  template <typename _Tp = void,
4240  typename
4241  = decltype(declval<conditional_t<true, value_type, _Tp>&>()++)>
4242  _GLIBCXX_SIMD_INTRINSIC constexpr value_type operator++(int) &&
4243  {
4244  const value_type __r = _M_read();
4245  value_type __x = __r;
4246  _M_write(++__x);
4247  return __r;
4248  }
4249 
4250  template <typename _Tp = void,
4251  typename
4252  = decltype(--declval<conditional_t<true, value_type, _Tp>&>())>
4253  _GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference operator--() &&
4254  {
4255  value_type __x = _M_read();
4256  _M_write(--__x);
4257  return {_M_obj, _M_index};
4258  }
4259 
4260  template <typename _Tp = void,
4261  typename
4262  = decltype(declval<conditional_t<true, value_type, _Tp>&>()--)>
4263  _GLIBCXX_SIMD_INTRINSIC constexpr value_type operator--(int) &&
4264  {
4265  const value_type __r = _M_read();
4266  value_type __x = __r;
4267  _M_write(--__x);
4268  return __r;
4269  }
4270 
4271  _GLIBCXX_SIMD_INTRINSIC friend void
4272  swap(_SmartReference&& __a, _SmartReference&& __b) noexcept(
4273  conjunction<
4274  is_nothrow_constructible<value_type, _SmartReference&&>,
4275  is_nothrow_assignable<_SmartReference&&, value_type&&>>::value)
4276  {
4277  value_type __tmp = static_cast<_SmartReference&&>(__a);
4278  static_cast<_SmartReference&&>(__a) = static_cast<value_type>(__b);
4279  static_cast<_SmartReference&&>(__b) = std::move(__tmp);
4280  }
4281 
4282  _GLIBCXX_SIMD_INTRINSIC friend void
4283  swap(value_type& __a, _SmartReference&& __b) noexcept(
4284  conjunction<
4285  is_nothrow_constructible<value_type, value_type&&>,
4286  is_nothrow_assignable<value_type&, value_type&&>,
4287  is_nothrow_assignable<_SmartReference&&, value_type&&>>::value)
4288  {
4289  value_type __tmp(std::move(__a));
4290  __a = static_cast<value_type>(__b);
4291  static_cast<_SmartReference&&>(__b) = std::move(__tmp);
4292  }
4293 
4294  _GLIBCXX_SIMD_INTRINSIC friend void
4295  swap(_SmartReference&& __a, value_type& __b) noexcept(
4296  conjunction<
4297  is_nothrow_constructible<value_type, _SmartReference&&>,
4298  is_nothrow_assignable<value_type&, value_type&&>,
4299  is_nothrow_assignable<_SmartReference&&, value_type&&>>::value)
4300  {
4301  value_type __tmp(__a);
4302  static_cast<_SmartReference&&>(__a) = std::move(__b);
4303  __b = std::move(__tmp);
4304  }
4305  };
4306 
4307 // }}}
4308 // __scalar_abi_wrapper {{{
4309 template <int _Bytes>
4310  struct __scalar_abi_wrapper
4311  {
4312  template <typename _Tp> static constexpr size_t _S_full_size = 1;
4313  template <typename _Tp> static constexpr size_t _S_size = 1;
4314  template <typename _Tp> static constexpr size_t _S_is_partial = false;
4315 
4316  template <typename _Tp, typename _Abi = simd_abi::scalar>
4317  static constexpr bool _S_is_valid_v
4318  = _Abi::template _IsValid<_Tp>::value && sizeof(_Tp) == _Bytes;
4319  };
4320 
4321 // }}}
4322 // __decay_abi metafunction {{{
4323 template <typename _Tp>
4324  struct __decay_abi { using type = _Tp; };
4325 
4326 template <int _Bytes>
4327  struct __decay_abi<__scalar_abi_wrapper<_Bytes>>
4328  { using type = simd_abi::scalar; };
4329 
4330 // }}}
4331 // __find_next_valid_abi metafunction {{{1
4332 // Given an ABI tag A<N>, find an N2 < N such that A<N2>::_S_is_valid_v<_Tp> ==
4333 // true, N2 is a power-of-2, and A<N2>::_S_is_partial<_Tp> is false. Break
4334 // recursion at 2 elements in the resulting ABI tag. In this case
4335 // type::_S_is_valid_v<_Tp> may be false.
4336 template <template <int> class _Abi, int _Bytes, typename _Tp>
4337  struct __find_next_valid_abi
4338  {
4339  static constexpr auto _S_choose()
4340  {
4341  constexpr int _NextBytes = std::__bit_ceil(_Bytes) / 2;
4342  using _NextAbi = _Abi<_NextBytes>;
4343  if constexpr (_NextBytes < sizeof(_Tp) * 2) // break recursion
4344  return _Abi<_Bytes>();
4345  else if constexpr (_NextAbi::template _S_is_partial<_Tp> == false
4346  && _NextAbi::template _S_is_valid_v<_Tp>)
4347  return _NextAbi();
4348  else
4349  return __find_next_valid_abi<_Abi, _NextBytes, _Tp>::_S_choose();
4350  }
4351 
4352  using type = decltype(_S_choose());
4353  };
4354 
4355 template <int _Bytes, typename _Tp>
4356  struct __find_next_valid_abi<__scalar_abi_wrapper, _Bytes, _Tp>
4357  { using type = simd_abi::scalar; };
4358 
4359 // _AbiList {{{1
4360 template <template <int> class...>
4361  struct _AbiList
4362  {
4363  template <typename, int> static constexpr bool _S_has_valid_abi = false;
4364  template <typename, int> using _FirstValidAbi = void;
4365  template <typename, int> using _BestAbi = void;
4366  };
4367 
4368 template <template <int> class _A0, template <int> class... _Rest>
4369  struct _AbiList<_A0, _Rest...>
4370  {
4371  template <typename _Tp, int _Np>
4372  static constexpr bool _S_has_valid_abi
4373  = _A0<sizeof(_Tp) * _Np>::template _S_is_valid_v<
4374  _Tp> || _AbiList<_Rest...>::template _S_has_valid_abi<_Tp, _Np>;
4375 
4376  template <typename _Tp, int _Np>
4377  using _FirstValidAbi = conditional_t<
4378  _A0<sizeof(_Tp) * _Np>::template _S_is_valid_v<_Tp>,
4379  typename __decay_abi<_A0<sizeof(_Tp) * _Np>>::type,
4380  typename _AbiList<_Rest...>::template _FirstValidAbi<_Tp, _Np>>;
4381 
4382  template <typename _Tp, int _Np>
4383  static constexpr auto _S_determine_best_abi()
4384  {
4385  static_assert(_Np >= 1);
4386  constexpr int _Bytes = sizeof(_Tp) * _Np;
4387  if constexpr (_Np == 1)
4388  return __make_dependent_t<_Tp, simd_abi::scalar>{};
4389  else
4390  {
4391  constexpr int __fullsize = _A0<_Bytes>::template _S_full_size<_Tp>;
4392  // _A0<_Bytes> is good if:
4393  // 1. The ABI tag is valid for _Tp
4394  // 2. The storage overhead is no more than padding to fill the next
4395  // power-of-2 number of bytes
4396  if constexpr (_A0<_Bytes>::template _S_is_valid_v<
4397  _Tp> && __fullsize / 2 < _Np)
4398  return typename __decay_abi<_A0<_Bytes>>::type{};
4399  else
4400  {
4401  using _Bp =
4402  typename __find_next_valid_abi<_A0, _Bytes, _Tp>::type;
4403  if constexpr (_Bp::template _S_is_valid_v<
4404  _Tp> && _Bp::template _S_size<_Tp> <= _Np)
4405  return _Bp{};
4406  else
4407  return
4408  typename _AbiList<_Rest...>::template _BestAbi<_Tp, _Np>{};
4409  }
4410  }
4411  }
4412 
4413  template <typename _Tp, int _Np>
4414  using _BestAbi = decltype(_S_determine_best_abi<_Tp, _Np>());
4415  };
4416 
4417 // }}}1
4418 
4419 // the following lists all native ABIs, which makes them accessible to
4420 // simd_abi::deduce and select_best_vector_type_t (for fixed_size). Order
4421 // matters: Whatever comes first has higher priority.
4422 using _AllNativeAbis = _AbiList<simd_abi::_VecBltnBtmsk, simd_abi::_VecBuiltin,
4423  __scalar_abi_wrapper>;
4424 
4425 // valid _SimdTraits specialization {{{1
4426 template <typename _Tp, typename _Abi>
4427  struct _SimdTraits<_Tp, _Abi, void_t<typename _Abi::template _IsValid<_Tp>>>
4428  : _Abi::template __traits<_Tp> {};
4429 
4430 // __deduce_impl specializations {{{1
4431 // try all native ABIs (including scalar) first
4432 template <typename _Tp, size_t _Np>
4433  struct __deduce_impl<
4434  _Tp, _Np, enable_if_t<_AllNativeAbis::template _S_has_valid_abi<_Tp, _Np>>>
4435  { using type = _AllNativeAbis::_FirstValidAbi<_Tp, _Np>; };
4436 
4437 // fall back to fixed_size only if scalar and native ABIs don't match
4438 template <typename _Tp, size_t _Np, typename = void>
4439  struct __deduce_fixed_size_fallback {};
4440 
4441 template <typename _Tp, size_t _Np>
4442  struct __deduce_fixed_size_fallback<_Tp, _Np,
4443  enable_if_t<simd_abi::fixed_size<_Np>::template _S_is_valid_v<_Tp>>>
4444  { using type = simd_abi::fixed_size<_Np>; };
4445 
4446 template <typename _Tp, size_t _Np, typename>
4447  struct __deduce_impl : public __deduce_fixed_size_fallback<_Tp, _Np> {};
4448 
4449 //}}}1
4450 /// @endcond
4451 
4452 // simd_mask {{{
4453 template <typename _Tp, typename _Abi>
4454  class simd_mask : public _SimdTraits<_Tp, _Abi>::_MaskBase
4455  {
4456  // types, tags, and friends {{{
4457  using _Traits = _SimdTraits<_Tp, _Abi>;
4458  using _MemberType = typename _Traits::_MaskMember;
4459 
4460  // We map all masks with equal element sizeof to a single integer type, the
4461  // one given by __int_for_sizeof_t<_Tp>. This is the approach
4462  // [[gnu::vector_size(N)]] types take as well and it reduces the number of
4463  // template specializations in the implementation classes.
4464  using _Ip = __int_for_sizeof_t<_Tp>;
4465  static constexpr _Ip* _S_type_tag = nullptr;
4466 
4467  friend typename _Traits::_MaskBase;
4468  friend class simd<_Tp, _Abi>; // to construct masks on return
4469  friend typename _Traits::_SimdImpl; // to construct masks on return and
4470  // inspect data on masked operations
4471  public:
4472  using _Impl = typename _Traits::_MaskImpl;
4473  friend _Impl;
4474 
4475  // }}}
4476  // member types {{{
4477  using value_type = bool;
4478  using reference = _SmartReference<_MemberType, _Impl, value_type>;
4479  using simd_type = simd<_Tp, _Abi>;
4480  using abi_type = _Abi;
4481 
4482  // }}}
4483  static constexpr size_t size() // {{{
4484  { return __size_or_zero_v<_Tp, _Abi>; }
4485 
4486  // }}}
4487  // constructors & assignment {{{
4488  simd_mask() = default;
4489  simd_mask(const simd_mask&) = default;
4490  simd_mask(simd_mask&&) = default;
4491  simd_mask& operator=(const simd_mask&) = default;
4492  simd_mask& operator=(simd_mask&&) = default;
4493 
4494  // }}}
4495  // access to internal representation (optional feature) {{{
4496  _GLIBCXX_SIMD_ALWAYS_INLINE explicit
4497  simd_mask(typename _Traits::_MaskCastType __init)
4498  : _M_data{__init} {}
4499  // conversions to internal type is done in _MaskBase
4500 
4501  // }}}
4502  // bitset interface (extension to be proposed) {{{
4503  // TS_FEEDBACK:
4504  // Conversion of simd_mask to and from bitset makes it much easier to
4505  // interface with other facilities. I suggest adding `static
4506  // simd_mask::from_bitset` and `simd_mask::to_bitset`.
4507  _GLIBCXX_SIMD_ALWAYS_INLINE static simd_mask
4508  __from_bitset(bitset<size()> bs)
4509  { return {__bitset_init, bs}; }
4510 
4511  _GLIBCXX_SIMD_ALWAYS_INLINE bitset<size()>
4512  __to_bitset() const
4513  { return _Impl::_S_to_bits(_M_data)._M_to_bitset(); }
4514 
4515  // }}}
4516  // explicit broadcast constructor {{{
4517  _GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR
4518  simd_mask(value_type __x)
4519  : _M_data(_Impl::template _S_broadcast<_Ip>(__x)) {}
4520 
4521  // }}}
4522  // implicit type conversion constructor {{{
4523  #ifdef _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
4524  // proposed improvement
4525  template <typename _Up, typename _A2,
4526  typename = enable_if_t<simd_size_v<_Up, _A2> == size()>>
4527  _GLIBCXX_SIMD_ALWAYS_INLINE explicit(sizeof(_MemberType)
4528  != sizeof(typename _SimdTraits<_Up, _A2>::_MaskMember))
4529  simd_mask(const simd_mask<_Up, _A2>& __x)
4530  : simd_mask(__proposed::static_simd_cast<simd_mask>(__x)) {}
4531  #else
4532  // conforming to ISO/IEC 19570:2018
4533  template <typename _Up, typename = enable_if_t<conjunction<
4534  is_same<abi_type, simd_abi::fixed_size<size()>>,
4535  is_same<_Up, _Up>>::value>>
4536  _GLIBCXX_SIMD_ALWAYS_INLINE
4537  simd_mask(const simd_mask<_Up, simd_abi::fixed_size<size()>>& __x)
4538  : _M_data(_Impl::_S_from_bitmask(__data(__x), _S_type_tag)) {}
4539  #endif
4540 
4541  // }}}
4542  // load constructor {{{
4543  template <typename _Flags>
4544  _GLIBCXX_SIMD_ALWAYS_INLINE
4545  simd_mask(const value_type* __mem, _Flags)
4546  : _M_data(_Impl::template _S_load<_Ip>(
4547  _Flags::template _S_apply<simd_mask>(__mem))) {}
4548 
4549  template <typename _Flags>
4550  _GLIBCXX_SIMD_ALWAYS_INLINE
4551  simd_mask(const value_type* __mem, simd_mask __k, _Flags)
4552  : _M_data{}
4553  {
4554  _M_data
4555  = _Impl::_S_masked_load(_M_data, __k._M_data,
4556  _Flags::template _S_apply<simd_mask>(__mem));
4557  }
4558 
4559  // }}}
4560  // loads [simd_mask.load] {{{
4561  template <typename _Flags>
4562  _GLIBCXX_SIMD_ALWAYS_INLINE void
4563  copy_from(const value_type* __mem, _Flags)
4564  {
4565  _M_data = _Impl::template _S_load<_Ip>(
4566  _Flags::template _S_apply<simd_mask>(__mem));
4567  }
4568 
4569  // }}}
4570  // stores [simd_mask.store] {{{
4571  template <typename _Flags>
4572  _GLIBCXX_SIMD_ALWAYS_INLINE void
4573  copy_to(value_type* __mem, _Flags) const
4574  { _Impl::_S_store(_M_data, _Flags::template _S_apply<simd_mask>(__mem)); }
4575 
4576  // }}}
4577  // scalar access {{{
4578  _GLIBCXX_SIMD_ALWAYS_INLINE reference
4579  operator[](size_t __i)
4580  {
4581  if (__i >= size())
4582  __invoke_ub("Subscript %d is out of range [0, %d]", __i, size() - 1);
4583  return {_M_data, int(__i)};
4584  }
4585 
4586  _GLIBCXX_SIMD_ALWAYS_INLINE value_type
4587  operator[](size_t __i) const
4588  {
4589  if (__i >= size())
4590  __invoke_ub("Subscript %d is out of range [0, %d]", __i, size() - 1);
4591  if constexpr (__is_scalar_abi<_Abi>())
4592  return _M_data;
4593  else
4594  return static_cast<bool>(_M_data[__i]);
4595  }
4596 
4597  // }}}
4598  // negation {{{
4599  _GLIBCXX_SIMD_ALWAYS_INLINE simd_mask
4600  operator!() const
4601  { return {__private_init, _Impl::_S_bit_not(_M_data)}; }
4602 
4603  // }}}
4604  // simd_mask binary operators [simd_mask.binary] {{{
4605  #ifdef _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
4606  // simd_mask<int> && simd_mask<uint> needs disambiguation
4607  template <typename _Up, typename _A2,
4608  typename
4609  = enable_if_t<is_convertible_v<simd_mask<_Up, _A2>, simd_mask>>>
4610  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4611  operator&&(const simd_mask& __x, const simd_mask<_Up, _A2>& __y)
4612  {
4613  return {__private_init,
4614  _Impl::_S_logical_and(__x._M_data, simd_mask(__y)._M_data)};
4615  }
4616 
4617  template <typename _Up, typename _A2,
4618  typename
4619  = enable_if_t<is_convertible_v<simd_mask<_Up, _A2>, simd_mask>>>
4620  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4621  operator||(const simd_mask& __x, const simd_mask<_Up, _A2>& __y)
4622  {
4623  return {__private_init,
4624  _Impl::_S_logical_or(__x._M_data, simd_mask(__y)._M_data)};
4625  }
4626  #endif // _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
4627 
4628  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4629  operator&&(const simd_mask& __x, const simd_mask& __y)
4630  {
4631  return {__private_init, _Impl::_S_logical_and(__x._M_data, __y._M_data)};
4632  }
4633 
4634  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4635  operator||(const simd_mask& __x, const simd_mask& __y)
4636  {
4637  return {__private_init, _Impl::_S_logical_or(__x._M_data, __y._M_data)};
4638  }
4639 
4640  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4641  operator&(const simd_mask& __x, const simd_mask& __y)
4642  { return {__private_init, _Impl::_S_bit_and(__x._M_data, __y._M_data)}; }
4643 
4644  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4645  operator|(const simd_mask& __x, const simd_mask& __y)
4646  { return {__private_init, _Impl::_S_bit_or(__x._M_data, __y._M_data)}; }
4647 
4648  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4649  operator^(const simd_mask& __x, const simd_mask& __y)
4650  { return {__private_init, _Impl::_S_bit_xor(__x._M_data, __y._M_data)}; }
4651 
4652  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask&
4653  operator&=(simd_mask& __x, const simd_mask& __y)
4654  {
4655  __x._M_data = _Impl::_S_bit_and(__x._M_data, __y._M_data);
4656  return __x;
4657  }
4658 
4659  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask&
4660  operator|=(simd_mask& __x, const simd_mask& __y)
4661  {
4662  __x._M_data = _Impl::_S_bit_or(__x._M_data, __y._M_data);
4663  return __x;
4664  }
4665 
4666  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask&
4667  operator^=(simd_mask& __x, const simd_mask& __y)
4668  {
4669  __x._M_data = _Impl::_S_bit_xor(__x._M_data, __y._M_data);
4670  return __x;
4671  }
4672 
4673  // }}}
4674  // simd_mask compares [simd_mask.comparison] {{{
4675  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask
4676  operator==(const simd_mask& __x, const simd_mask& __y)
4677  { return !operator!=(__x, __y); }
4678 
4679  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask
4680  operator!=(const simd_mask& __x, const simd_mask& __y)
4681  { return {__private_init, _Impl::_S_bit_xor(__x._M_data, __y._M_data)}; }
4682 
4683  // }}}
4684  // private_init ctor {{{
4685  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
4686  simd_mask(_PrivateInit, typename _Traits::_MaskMember __init)
4687  : _M_data(__init) {}
4688 
4689  // }}}
4690  // private_init generator ctor {{{
4691  template <typename _Fp, typename = decltype(bool(declval<_Fp>()(size_t())))>
4692  _GLIBCXX_SIMD_INTRINSIC constexpr
4693  simd_mask(_PrivateInit, _Fp&& __gen)
4694  : _M_data()
4695  {
4696  __execute_n_times<size()>([&](auto __i) constexpr {
4697  _Impl::_S_set(_M_data, __i, __gen(__i));
4698  });
4699  }
4700 
4701  // }}}
4702  // bitset_init ctor {{{
4703  _GLIBCXX_SIMD_INTRINSIC simd_mask(_BitsetInit, bitset<size()> __init)
4704  : _M_data(
4705  _Impl::_S_from_bitmask(_SanitizedBitMask<size()>(__init), _S_type_tag))
4706  {}
4707 
4708  // }}}
4709  // __cvt {{{
4710  // TS_FEEDBACK:
4711  // The conversion operator this implements should be a ctor on simd_mask.
4712  // Once you call .__cvt() on a simd_mask it converts conveniently.
4713  // A useful variation: add `explicit(sizeof(_Tp) != sizeof(_Up))`
4714  struct _CvtProxy
4715  {
4716  template <typename _Up, typename _A2,
4717  typename
4718  = enable_if_t<simd_size_v<_Up, _A2> == simd_size_v<_Tp, _Abi>>>
4719  _GLIBCXX_SIMD_ALWAYS_INLINE
4720  operator simd_mask<_Up, _A2>() &&
4721  {
4722  using namespace std::experimental::__proposed;
4723  return static_simd_cast<simd_mask<_Up, _A2>>(_M_data);
4724  }
4725 
4726  const simd_mask<_Tp, _Abi>& _M_data;
4727  };
4728 
4729  _GLIBCXX_SIMD_INTRINSIC _CvtProxy
4730  __cvt() const
4731  { return {*this}; }
4732 
4733  // }}}
4734  // operator?: overloads (suggested extension) {{{
4735  #ifdef __GXX_CONDITIONAL_IS_OVERLOADABLE__
4736  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask
4737  operator?:(const simd_mask& __k, const simd_mask& __where_true,
4738  const simd_mask& __where_false)
4739  {
4740  auto __ret = __where_false;
4741  _Impl::_S_masked_assign(__k._M_data, __ret._M_data, __where_true._M_data);
4742  return __ret;
4743  }
4744 
4745  template <typename _U1, typename _U2,
4746  typename _Rp = simd<common_type_t<_U1, _U2>, _Abi>,
4747  typename = enable_if_t<conjunction_v<
4748  is_convertible<_U1, _Rp>, is_convertible<_U2, _Rp>,
4749  is_convertible<simd_mask, typename _Rp::mask_type>>>>
4750  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend _Rp
4751  operator?:(const simd_mask& __k, const _U1& __where_true,
4752  const _U2& __where_false)
4753  {
4754  _Rp __ret = __where_false;
4755  _Rp::_Impl::_S_masked_assign(
4756  __data(static_cast<typename _Rp::mask_type>(__k)), __data(__ret),
4757  __data(static_cast<_Rp>(__where_true)));
4758  return __ret;
4759  }
4760 
4761  #ifdef _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
4762  template <typename _Kp, typename _Ak, typename _Up, typename _Au,
4763  typename = enable_if_t<
4764  conjunction_v<is_convertible<simd_mask<_Kp, _Ak>, simd_mask>,
4765  is_convertible<simd_mask<_Up, _Au>, simd_mask>>>>
4766  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask
4767  operator?:(const simd_mask<_Kp, _Ak>& __k, const simd_mask& __where_true,
4768  const simd_mask<_Up, _Au>& __where_false)
4769  {
4770  simd_mask __ret = __where_false;
4771  _Impl::_S_masked_assign(simd_mask(__k)._M_data, __ret._M_data,
4772  __where_true._M_data);
4773  return __ret;
4774  }
4775  #endif // _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
4776  #endif // __GXX_CONDITIONAL_IS_OVERLOADABLE__
4777 
4778  // }}}
4779  // _M_is_constprop {{{
4780  _GLIBCXX_SIMD_INTRINSIC constexpr bool
4781  _M_is_constprop() const
4782  {
4783  if constexpr (__is_scalar_abi<_Abi>())
4784  return __builtin_constant_p(_M_data);
4785  else
4786  return _M_data._M_is_constprop();
4787  }
4788 
4789  // }}}
4790 
4791  private:
4792  friend const auto& __data<_Tp, abi_type>(const simd_mask&);
4793  friend auto& __data<_Tp, abi_type>(simd_mask&);
4794  alignas(_Traits::_S_mask_align) _MemberType _M_data;
4795  };
4796 
4797 // }}}
4798 
4799 /// @cond undocumented
4800 // __data(simd_mask) {{{
4801 template <typename _Tp, typename _Ap>
4802  _GLIBCXX_SIMD_INTRINSIC constexpr const auto&
4803  __data(const simd_mask<_Tp, _Ap>& __x)
4804  { return __x._M_data; }
4805 
4806 template <typename _Tp, typename _Ap>
4807  _GLIBCXX_SIMD_INTRINSIC constexpr auto&
4808  __data(simd_mask<_Tp, _Ap>& __x)
4809  { return __x._M_data; }
4810 
4811 // }}}
4812 /// @endcond
4813 
4814 // simd_mask reductions [simd_mask.reductions] {{{
4815 template <typename _Tp, typename _Abi>
4816  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4817  all_of(const simd_mask<_Tp, _Abi>& __k) noexcept
4818  {
4819  if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4820  {
4821  for (size_t __i = 0; __i < simd_size_v<_Tp, _Abi>; ++__i)
4822  if (!__k[__i])
4823  return false;
4824  return true;
4825  }
4826  else
4827  return _Abi::_MaskImpl::_S_all_of(__k);
4828  }
4829 
4830 template <typename _Tp, typename _Abi>
4831  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4832  any_of(const simd_mask<_Tp, _Abi>& __k) noexcept
4833  {
4834  if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4835  {
4836  for (size_t __i = 0; __i < simd_size_v<_Tp, _Abi>; ++__i)
4837  if (__k[__i])
4838  return true;
4839  return false;
4840  }
4841  else
4842  return _Abi::_MaskImpl::_S_any_of(__k);
4843  }
4844 
4845 template <typename _Tp, typename _Abi>
4846  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4847  none_of(const simd_mask<_Tp, _Abi>& __k) noexcept
4848  {
4849  if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4850  {
4851  for (size_t __i = 0; __i < simd_size_v<_Tp, _Abi>; ++__i)
4852  if (__k[__i])
4853  return false;
4854  return true;
4855  }
4856  else
4857  return _Abi::_MaskImpl::_S_none_of(__k);
4858  }
4859 
4860 template <typename _Tp, typename _Abi>
4861  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4862  some_of(const simd_mask<_Tp, _Abi>& __k) noexcept
4863  {
4864  if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4865  {
4866  for (size_t __i = 1; __i < simd_size_v<_Tp, _Abi>; ++__i)
4867  if (__k[__i] != __k[__i - 1])
4868  return true;
4869  return false;
4870  }
4871  else
4872  return _Abi::_MaskImpl::_S_some_of(__k);
4873  }
4874 
4875 template <typename _Tp, typename _Abi>
4876  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4877  popcount(const simd_mask<_Tp, _Abi>& __k) noexcept
4878  {
4879  if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4880  {
4881  const int __r = __call_with_subscripts<simd_size_v<_Tp, _Abi>>(
4882  __k, [](auto... __elements) { return ((__elements != 0) + ...); });
4883  if (__builtin_is_constant_evaluated() || __builtin_constant_p(__r))
4884  return __r;
4885  }
4886  return _Abi::_MaskImpl::_S_popcount(__k);
4887  }
4888 
4889 template <typename _Tp, typename _Abi>
4890  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4891  find_first_set(const simd_mask<_Tp, _Abi>& __k)
4892  {
4893  if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4894  {
4895  constexpr size_t _Np = simd_size_v<_Tp, _Abi>;
4896  const size_t _Idx = __call_with_n_evaluations<_Np>(
4897  [](auto... __indexes) { return std::min({__indexes...}); },
4898  [&](auto __i) { return __k[__i] ? +__i : _Np; });
4899  if (_Idx >= _Np)
4900  __invoke_ub("find_first_set(empty mask) is UB");
4901  if (__builtin_constant_p(_Idx))
4902  return _Idx;
4903  }
4904  return _Abi::_MaskImpl::_S_find_first_set(__k);
4905  }
4906 
4907 template <typename _Tp, typename _Abi>
4908  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4909  find_last_set(const simd_mask<_Tp, _Abi>& __k)
4910  {
4911  if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4912  {
4913  constexpr size_t _Np = simd_size_v<_Tp, _Abi>;
4914  const int _Idx = __call_with_n_evaluations<_Np>(
4915  [](auto... __indexes) { return std::max({__indexes...}); },
4916  [&](auto __i) { return __k[__i] ? int(__i) : -1; });
4917  if (_Idx < 0)
4918  __invoke_ub("find_first_set(empty mask) is UB");
4919  if (__builtin_constant_p(_Idx))
4920  return _Idx;
4921  }
4922  return _Abi::_MaskImpl::_S_find_last_set(__k);
4923  }
4924 
4925 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4926 all_of(_ExactBool __x) noexcept
4927 { return __x; }
4928 
4929 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4930 any_of(_ExactBool __x) noexcept
4931 { return __x; }
4932 
4933 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4934 none_of(_ExactBool __x) noexcept
4935 { return !__x; }
4936 
4937 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4938 some_of(_ExactBool) noexcept
4939 { return false; }
4940 
4941 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4942 popcount(_ExactBool __x) noexcept
4943 { return __x; }
4944 
4945 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4946 find_first_set(_ExactBool)
4947 { return 0; }
4948 
4949 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4950 find_last_set(_ExactBool)
4951 { return 0; }
4952 
4953 // }}}
4954 
4955 /// @cond undocumented
4956 // _SimdIntOperators{{{1
4957 template <typename _V, typename _Tp, typename _Abi, bool>
4958  class _SimdIntOperators {};
4959 
4960 template <typename _V, typename _Tp, typename _Abi>
4961  class _SimdIntOperators<_V, _Tp, _Abi, true>
4962  {
4963  using _Impl = typename _SimdTraits<_Tp, _Abi>::_SimdImpl;
4964 
4965  _GLIBCXX_SIMD_INTRINSIC const _V& __derived() const
4966  { return *static_cast<const _V*>(this); }
4967 
4968  template <typename _Up>
4969  _GLIBCXX_SIMD_INTRINSIC static _GLIBCXX_SIMD_CONSTEXPR _V
4970  _S_make_derived(_Up&& __d)
4971  { return {__private_init, static_cast<_Up&&>(__d)}; }
4972 
4973  public:
4974  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
4975  _V&
4976  operator%=(_V& __lhs, const _V& __x)
4977  { return __lhs = __lhs % __x; }
4978 
4979  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
4980  _V&
4981  operator&=(_V& __lhs, const _V& __x)
4982  { return __lhs = __lhs & __x; }
4983 
4984  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
4985  _V&
4986  operator|=(_V& __lhs, const _V& __x)
4987  { return __lhs = __lhs | __x; }
4988 
4989  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
4990  _V&
4991  operator^=(_V& __lhs, const _V& __x)
4992  { return __lhs = __lhs ^ __x; }
4993 
4994  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
4995  _V&
4996  operator<<=(_V& __lhs, const _V& __x)
4997  { return __lhs = __lhs << __x; }
4998 
4999  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5000  _V&
5001  operator>>=(_V& __lhs, const _V& __x)
5002  { return __lhs = __lhs >> __x; }
5003 
5004  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5005  _V&
5006  operator<<=(_V& __lhs, int __x)
5007  { return __lhs = __lhs << __x; }
5008 
5009  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5010  _V&
5011  operator>>=(_V& __lhs, int __x)
5012  { return __lhs = __lhs >> __x; }
5013 
5014  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5015  _V
5016  operator%(const _V& __x, const _V& __y)
5017  {
5018  return _SimdIntOperators::_S_make_derived(
5019  _Impl::_S_modulus(__data(__x), __data(__y)));
5020  }
5021 
5022  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5023  _V
5024  operator&(const _V& __x, const _V& __y)
5025  {
5026  return _SimdIntOperators::_S_make_derived(
5027  _Impl::_S_bit_and(__data(__x), __data(__y)));
5028  }
5029 
5030  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5031  _V
5032  operator|(const _V& __x, const _V& __y)
5033  {
5034  return _SimdIntOperators::_S_make_derived(
5035  _Impl::_S_bit_or(__data(__x), __data(__y)));
5036  }
5037 
5038  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5039  _V
5040  operator^(const _V& __x, const _V& __y)
5041  {
5042  return _SimdIntOperators::_S_make_derived(
5043  _Impl::_S_bit_xor(__data(__x), __data(__y)));
5044  }
5045 
5046  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5047  _V
5048  operator<<(const _V& __x, const _V& __y)
5049  {
5050  return _SimdIntOperators::_S_make_derived(
5051  _Impl::_S_bit_shift_left(__data(__x), __data(__y)));
5052  }
5053 
5054  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5055  _V
5056  operator>>(const _V& __x, const _V& __y)
5057  {
5058  return _SimdIntOperators::_S_make_derived(
5059  _Impl::_S_bit_shift_right(__data(__x), __data(__y)));
5060  }
5061 
5062  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5063  _V
5064  operator<<(const _V& __x, int __y)
5065  {
5066  if (__y < 0)
5067  __invoke_ub("The behavior is undefined if the right operand of a "
5068  "shift operation is negative. [expr.shift]\nA shift by "
5069  "%d was requested",
5070  __y);
5071  if (size_t(__y) >= sizeof(declval<_Tp>() << __y) * __CHAR_BIT__)
5072  __invoke_ub(
5073  "The behavior is undefined if the right operand of a "
5074  "shift operation is greater than or equal to the width of the "
5075  "promoted left operand. [expr.shift]\nA shift by %d was requested",
5076  __y);
5077  return _SimdIntOperators::_S_make_derived(
5078  _Impl::_S_bit_shift_left(__data(__x), __y));
5079  }
5080 
5081  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5082  _V
5083  operator>>(const _V& __x, int __y)
5084  {
5085  if (__y < 0)
5086  __invoke_ub(
5087  "The behavior is undefined if the right operand of a shift "
5088  "operation is negative. [expr.shift]\nA shift by %d was requested",
5089  __y);
5090  if (size_t(__y) >= sizeof(declval<_Tp>() << __y) * __CHAR_BIT__)
5091  __invoke_ub(
5092  "The behavior is undefined if the right operand of a shift "
5093  "operation is greater than or equal to the width of the promoted "
5094  "left operand. [expr.shift]\nA shift by %d was requested",
5095  __y);
5096  return _SimdIntOperators::_S_make_derived(
5097  _Impl::_S_bit_shift_right(__data(__x), __y));
5098  }
5099 
5100  // unary operators (for integral _Tp)
5101  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR
5102  _V
5103  operator~() const
5104  { return {__private_init, _Impl::_S_complement(__derived()._M_data)}; }
5105  };
5106 
5107 //}}}1
5108 /// @endcond
5109 
5110 // simd {{{
5111 template <typename _Tp, typename _Abi>
5112  class simd : public _SimdIntOperators<
5113  simd<_Tp, _Abi>, _Tp, _Abi,
5114  conjunction<is_integral<_Tp>,
5115  typename _SimdTraits<_Tp, _Abi>::_IsValid>::value>,
5116  public _SimdTraits<_Tp, _Abi>::_SimdBase
5117  {
5118  using _Traits = _SimdTraits<_Tp, _Abi>;
5119  using _MemberType = typename _Traits::_SimdMember;
5120  using _CastType = typename _Traits::_SimdCastType;
5121  static constexpr _Tp* _S_type_tag = nullptr;
5122  friend typename _Traits::_SimdBase;
5123 
5124  public:
5125  using _Impl = typename _Traits::_SimdImpl;
5126  friend _Impl;
5127  friend _SimdIntOperators<simd, _Tp, _Abi, true>;
5128 
5129  using value_type = _Tp;
5130  using reference = _SmartReference<_MemberType, _Impl, value_type>;
5131  using mask_type = simd_mask<_Tp, _Abi>;
5132  using abi_type = _Abi;
5133 
5134  static constexpr size_t size()
5135  { return __size_or_zero_v<_Tp, _Abi>; }
5136 
5137  _GLIBCXX_SIMD_CONSTEXPR simd() = default;
5138  _GLIBCXX_SIMD_CONSTEXPR simd(const simd&) = default;
5139  _GLIBCXX_SIMD_CONSTEXPR simd(simd&&) noexcept = default;
5140  _GLIBCXX_SIMD_CONSTEXPR simd& operator=(const simd&) = default;
5141  _GLIBCXX_SIMD_CONSTEXPR simd& operator=(simd&&) noexcept = default;
5142 
5143  // implicit broadcast constructor
5144  template <typename _Up,
5145  typename = enable_if_t<!is_same_v<__remove_cvref_t<_Up>, bool>>>
5146  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR
5147  simd(_ValuePreservingOrInt<_Up, value_type>&& __x)
5148  : _M_data(
5149  _Impl::_S_broadcast(static_cast<value_type>(static_cast<_Up&&>(__x))))
5150  {}
5151 
5152  // implicit type conversion constructor (convert from fixed_size to
5153  // fixed_size)
5154  template <typename _Up>
5155  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR
5156  simd(const simd<_Up, simd_abi::fixed_size<size()>>& __x,
5157  enable_if_t<
5158  conjunction<
5159  is_same<simd_abi::fixed_size<size()>, abi_type>,
5160  negation<__is_narrowing_conversion<_Up, value_type>>,
5161  __converts_to_higher_integer_rank<_Up, value_type>>::value,
5162  void*> = nullptr)
5163  : simd{static_cast<array<_Up, size()>>(__x).data(), vector_aligned} {}
5164 
5165  // explicit type conversion constructor
5166 #ifdef _GLIBCXX_SIMD_ENABLE_STATIC_CAST
5167  template <typename _Up, typename _A2,
5168  typename = decltype(static_simd_cast<simd>(
5169  declval<const simd<_Up, _A2>&>()))>
5170  _GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR
5171  simd(const simd<_Up, _A2>& __x)
5172  : simd(static_simd_cast<simd>(__x)) {}
5173 #endif // _GLIBCXX_SIMD_ENABLE_STATIC_CAST
5174 
5175  // generator constructor
5176  template <typename _Fp>
5177  _GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR
5178  simd(_Fp&& __gen, _ValuePreservingOrInt<decltype(declval<_Fp>()(
5179  declval<_SizeConstant<0>&>())),
5180  value_type>* = nullptr)
5181  : _M_data(_Impl::_S_generator(static_cast<_Fp&&>(__gen), _S_type_tag)) {}
5182 
5183  // load constructor
5184  template <typename _Up, typename _Flags>
5185  _GLIBCXX_SIMD_ALWAYS_INLINE
5186  simd(const _Up* __mem, _Flags)
5187  : _M_data(
5188  _Impl::_S_load(_Flags::template _S_apply<simd>(__mem), _S_type_tag))
5189  {}
5190 
5191  // loads [simd.load]
5192  template <typename _Up, typename _Flags>
5193  _GLIBCXX_SIMD_ALWAYS_INLINE void
5194  copy_from(const _Vectorizable<_Up>* __mem, _Flags)
5195  {
5196  _M_data = static_cast<decltype(_M_data)>(
5197  _Impl::_S_load(_Flags::template _S_apply<simd>(__mem), _S_type_tag));
5198  }
5199 
5200  // stores [simd.store]
5201  template <typename _Up, typename _Flags>
5202  _GLIBCXX_SIMD_ALWAYS_INLINE void
5203  copy_to(_Vectorizable<_Up>* __mem, _Flags) const
5204  {
5205  _Impl::_S_store(_M_data, _Flags::template _S_apply<simd>(__mem),
5206  _S_type_tag);
5207  }
5208 
5209  // scalar access
5210  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR reference
5211  operator[](size_t __i)
5212  { return {_M_data, int(__i)}; }
5213 
5214  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR value_type
5215  operator[]([[maybe_unused]] size_t __i) const
5216  {
5217  if constexpr (__is_scalar_abi<_Abi>())
5218  {
5219  _GLIBCXX_DEBUG_ASSERT(__i == 0);
5220  return _M_data;
5221  }
5222  else
5223  return _M_data[__i];
5224  }
5225 
5226  // increment and decrement:
5227  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd&
5228  operator++()
5229  {
5230  _Impl::_S_increment(_M_data);
5231  return *this;
5232  }
5233 
5234  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd
5235  operator++(int)
5236  {
5237  simd __r = *this;
5238  _Impl::_S_increment(_M_data);
5239  return __r;
5240  }
5241 
5242  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd&
5243  operator--()
5244  {
5245  _Impl::_S_decrement(_M_data);
5246  return *this;
5247  }
5248 
5249  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd
5250  operator--(int)
5251  {
5252  simd __r = *this;
5253  _Impl::_S_decrement(_M_data);
5254  return __r;
5255  }
5256 
5257  // unary operators (for any _Tp)
5258  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR mask_type
5259  operator!() const
5260  { return {__private_init, _Impl::_S_negate(_M_data)}; }
5261 
5262  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd
5263  operator+() const
5264  { return *this; }
5265 
5266  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd
5267  operator-() const
5268  { return {__private_init, _Impl::_S_unary_minus(_M_data)}; }
5269 
5270  // access to internal representation (suggested extension)
5271  _GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR
5272  simd(_CastType __init) : _M_data(__init) {}
5273 
5274  // compound assignment [simd.cassign]
5275  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd&
5276  operator+=(simd& __lhs, const simd& __x)
5277  { return __lhs = __lhs + __x; }
5278 
5279  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd&
5280  operator-=(simd& __lhs, const simd& __x)
5281  { return __lhs = __lhs - __x; }
5282 
5283  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd&
5284  operator*=(simd& __lhs, const simd& __x)
5285  { return __lhs = __lhs * __x; }
5286 
5287  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd&
5288  operator/=(simd& __lhs, const simd& __x)
5289  { return __lhs = __lhs / __x; }
5290 
5291  // binary operators [simd.binary]
5292  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
5293  operator+(const simd& __x, const simd& __y)
5294  { return {__private_init, _Impl::_S_plus(__x._M_data, __y._M_data)}; }
5295 
5296  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
5297  operator-(const simd& __x, const simd& __y)
5298  { return {__private_init, _Impl::_S_minus(__x._M_data, __y._M_data)}; }
5299 
5300  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
5301  operator*(const simd& __x, const simd& __y)
5302  { return {__private_init, _Impl::_S_multiplies(__x._M_data, __y._M_data)}; }
5303 
5304  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
5305  operator/(const simd& __x, const simd& __y)
5306  { return {__private_init, _Impl::_S_divides(__x._M_data, __y._M_data)}; }
5307 
5308  // compares [simd.comparison]
5309  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5310  operator==(const simd& __x, const simd& __y)
5311  { return simd::_S_make_mask(_Impl::_S_equal_to(__x._M_data, __y._M_data)); }
5312 
5313  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5314  operator!=(const simd& __x, const simd& __y)
5315  {
5316  return simd::_S_make_mask(
5317  _Impl::_S_not_equal_to(__x._M_data, __y._M_data));
5318  }
5319 
5320  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5321  operator<(const simd& __x, const simd& __y)
5322  { return simd::_S_make_mask(_Impl::_S_less(__x._M_data, __y._M_data)); }
5323 
5324  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5325  operator<=(const simd& __x, const simd& __y)
5326  {
5327  return simd::_S_make_mask(_Impl::_S_less_equal(__x._M_data, __y._M_data));
5328  }
5329 
5330  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5331  operator>(const simd& __x, const simd& __y)
5332  { return simd::_S_make_mask(_Impl::_S_less(__y._M_data, __x._M_data)); }
5333 
5334  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5335  operator>=(const simd& __x, const simd& __y)
5336  {
5337  return simd::_S_make_mask(_Impl::_S_less_equal(__y._M_data, __x._M_data));
5338  }
5339 
5340  // operator?: overloads (suggested extension) {{{
5341 #ifdef __GXX_CONDITIONAL_IS_OVERLOADABLE__
5342  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
5343  operator?:(const mask_type& __k, const simd& __where_true,
5344  const simd& __where_false)
5345  {
5346  auto __ret = __where_false;
5347  _Impl::_S_masked_assign(__data(__k), __data(__ret), __data(__where_true));
5348  return __ret;
5349  }
5350 
5351 #endif // __GXX_CONDITIONAL_IS_OVERLOADABLE__
5352  // }}}
5353 
5354  // "private" because of the first arguments's namespace
5355  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
5356  simd(_PrivateInit, const _MemberType& __init)
5357  : _M_data(__init) {}
5358 
5359  // "private" because of the first arguments's namespace
5360  _GLIBCXX_SIMD_INTRINSIC
5361  simd(_BitsetInit, bitset<size()> __init) : _M_data()
5362  { where(mask_type(__bitset_init, __init), *this) = ~*this; }
5363 
5364  _GLIBCXX_SIMD_INTRINSIC constexpr bool
5365  _M_is_constprop() const
5366  {
5367  if constexpr (__is_scalar_abi<_Abi>())
5368  return __builtin_constant_p(_M_data);
5369  else
5370  return _M_data._M_is_constprop();
5371  }
5372 
5373  private:
5374  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR static mask_type
5375  _S_make_mask(typename mask_type::_MemberType __k)
5376  { return {__private_init, __k}; }
5377 
5378  friend const auto& __data<value_type, abi_type>(const simd&);
5379  friend auto& __data<value_type, abi_type>(simd&);
5380  alignas(_Traits::_S_simd_align) _MemberType _M_data;
5381  };
5382 
5383 // }}}
5384 /// @cond undocumented
5385 // __data {{{
5386 template <typename _Tp, typename _Ap>
5387  _GLIBCXX_SIMD_INTRINSIC constexpr const auto&
5388  __data(const simd<_Tp, _Ap>& __x)
5389  { return __x._M_data; }
5390 
5391 template <typename _Tp, typename _Ap>
5392  _GLIBCXX_SIMD_INTRINSIC constexpr auto&
5393  __data(simd<_Tp, _Ap>& __x)
5394  { return __x._M_data; }
5395 
5396 // }}}
5397 namespace __float_bitwise_operators { //{{{
5398 template <typename _Tp, typename _Ap>
5399  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
5400  operator^(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
5401  {
5402  return {__private_init,
5403  _Ap::_SimdImpl::_S_bit_xor(__data(__a), __data(__b))};
5404  }
5405 
5406 template <typename _Tp, typename _Ap>
5407  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
5408  operator|(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
5409  {
5410  return {__private_init,
5411  _Ap::_SimdImpl::_S_bit_or(__data(__a), __data(__b))};
5412  }
5413 
5414 template <typename _Tp, typename _Ap>
5415  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
5416  operator&(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
5417  {
5418  return {__private_init,
5419  _Ap::_SimdImpl::_S_bit_and(__data(__a), __data(__b))};
5420  }
5421 
5422 template <typename _Tp, typename _Ap>
5423  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
5424  enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Ap>>
5425  operator~(const simd<_Tp, _Ap>& __a)
5426  { return {__private_init, _Ap::_SimdImpl::_S_complement(__data(__a))}; }
5427 } // namespace __float_bitwise_operators }}}
5428 /// @endcond
5429 
5430 /// @}
5431 _GLIBCXX_SIMD_END_NAMESPACE
5432 
5433 #endif // __cplusplus >= 201703L
5434 #endif // _GLIBCXX_EXPERIMENTAL_SIMD_H
5435 
5436 // vim: foldmethod=marker foldmarker={{{,}}}
constexpr _If_is_unsigned_integer< _Tp, int > popcount(_Tp __x) noexcept
The number of bits set in x.
Definition: bit:426
constexpr complex< _Tp > operator*(const complex< _Tp > &__x, const complex< _Tp > &__y)
Return new complex value x times y.
Definition: complex:392
constexpr complex< _Tp > operator/(const complex< _Tp > &__x, const complex< _Tp > &__y)
Return new complex value x divided by y.
Definition: complex:422
constexpr complex< _Tp > operator-(const complex< _Tp > &__x, const complex< _Tp > &__y)
Return new complex value x minus y.
Definition: complex:362
constexpr complex< _Tp > operator+(const complex< _Tp > &__x, const complex< _Tp > &__y)
Return new complex value x plus y.
Definition: complex:332
typename remove_reference< _Tp >::type remove_reference_t
Alias template for remove_reference.
Definition: type_traits:1670
typename make_unsigned< _Tp >::type make_unsigned_t
Alias template for make_unsigned.
Definition: type_traits:2009
void void_t
A metafunction that always yields void, used for detecting valid types.
Definition: type_traits:2636
integral_constant< bool, true > true_type
The type used as a compile-time boolean with true value.
Definition: type_traits:82
typename conditional< _Cond, _Iftrue, _Iffalse >::type conditional_t
Alias template for conditional.
Definition: type_traits:2618
typename remove_pointer< _Tp >::type remove_pointer_t
Alias template for remove_pointer.
Definition: type_traits:2084
integral_constant< bool, false > false_type
The type used as a compile-time boolean with false value.
Definition: type_traits:85
typename remove_const< _Tp >::type remove_const_t
Alias template for remove_const.
Definition: type_traits:1601
typename enable_if< _Cond, _Tp >::type enable_if_t
Alias template for enable_if.
Definition: type_traits:2614
constexpr auto tuple_cat(_Tpls &&... __tpls) -> typename __tuple_cat_result< _Tpls... >::__type
tuple_cat
Definition: tuple:1730
auto declval() noexcept -> decltype(__declval< _Tp >(0))
Definition: type_traits:2393
constexpr std::remove_reference< _Tp >::type && move(_Tp &&__t) noexcept
Convert a value to an rvalue.
Definition: move.h:104
constexpr const _Tp & max(const _Tp &, const _Tp &)
This does what you think it does.
Definition: stl_algobase.h:254
constexpr const _Tp & min(const _Tp &, const _Tp &)
This does what you think it does.
Definition: stl_algobase.h:230
constexpr _Tp reduce(_InputIterator __first, _InputIterator __last, _Tp __init, _BinaryOperation __binary_op)
Calculate reduction of values in a range.
Definition: numeric:287
std::basic_istream< _CharT, _Traits > & operator>>(std::basic_istream< _CharT, _Traits > &__is, bitset< _Nb > &__x)
Global I/O operators for bitsets.
Definition: bitset:1472
bitset< _Nb > operator^(const bitset< _Nb > &__x, const bitset< _Nb > &__y) noexcept
Global bitwise operations on bitsets.
Definition: bitset:1453
std::basic_ostream< _CharT, _Traits > & operator<<(std::basic_ostream< _CharT, _Traits > &__os, const bitset< _Nb > &__x)
Global I/O operators for bitsets.
Definition: bitset:1540
bitset< _Nb > operator|(const bitset< _Nb > &__x, const bitset< _Nb > &__y) noexcept
Global bitwise operations on bitsets.
Definition: bitset:1444
bitset< _Nb > operator&(const bitset< _Nb > &__x, const bitset< _Nb > &__y) noexcept
Global bitwise operations on bitsets.
Definition: bitset:1435